The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of Interleukin-22 Attenuates Bacterial Load and Organ Failure during Acute Polymicrobial Sepsis.

Interleukin-22 ( IL-22) is a recently discovered proinflammatory cytokine, structurally related to IL-10. Since IL-22 is induced by lipopolysaccharide in vivo, we studied the role of IL-22 in a model of polymicrobial peritonitis. Quantitative real-time reverse transcription-PCR analysis showed marked induction of IL-22 and IL-22 receptor in spleen and kidney during the course of sepsis. The biological activity of IL-22 is modulated by IL-22- binding protein (IL-22BP), which is considered a natural antagonist of IL-22. To further analyze the role of IL-22 during septic peritonitis, mice were treated with recombinant IL-22BP generated as Fcgamma2a fusion protein. IL-22BP-Fc completely blocked IL-22- induced STAT3 activation in hepatocytes in vitro. Treatment of mice with IL-22BP-Fc 4 h before sepsis induction led to enhanced accumulation of neutrophils and mononuclear phagocytes and a reduced bacterial load at the site of infection. In addition, IL-22 blockade led to an enhanced bacterial clearance in liver and kidney and reduced kidney injury. These results imply an important proinflammatory role of IL-22 during septic peritonitis, contributing to bacterial spread and organ failure. IL-22 therefore appears to play an important role in the regulation of inflammatory processes in vivo.[1]

References

  1. Inhibition of Interleukin-22 Attenuates Bacterial Load and Organ Failure during Acute Polymicrobial Sepsis. Weber, G.F., Schlautkötter, S., Kaiser-Moore, S., Altmayr, F., Holzmann, B., Weighardt, H. Infect. Immun. (2007) [Pubmed]
 
WikiGenes - Universities