The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Implications of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 signaling in human neuroblastoma progression.

PURPOSE: Neuroblastoma is a common pediatric tumor that is derived from improperly differentiated neural crest cells (NCC). We recently revealed that endocrine gland-derived vascular endothelial growth factor/prokineticin-1 (EG-VEGF/Prok-1) is a key factor mediating the growth and differentiation of enteric NCCs during development. In this report, we further elucidate its role in neuroblastoma progression. EXPERIMENTAL DESIGN: We studied the expression and copy number of EG-VEGF/Prok-1 receptors (PK-R1 and PK-R2) in 26 neuroblastoma tumors by real-time reverse transcription-PCR and immunohistochemical analysis. Implication of EG-VEGF/Prok-1 signaling in neuroblastoma progression was further shown in a neuroblastoma cell line (SK-N-SH). RESULTS: We found that all neuroblastoma samples from stages II to IV expressed both PK-R1 and PK-R2. Kruskall-Wallis signed rank tests revealed that the expression level of PK-R1 transcript is associated with the stages and metastasis of the neuroblastoma (P<0.05), and PK-R2 is persistently higher in advanced-stage neuroblastoma samples. About 38% of the neuroblastoma tumors (10:26) possessed MYCN amplification, whereas no PK-R1 and PK-R2 amplifications were detected, suggesting that the overexpression of the receptors was not due to gene amplification. Subsequent functional studies showed that EG-VEGF/Prok-1 activates the Akt pathway to induce the proliferation of neuroblastoma cells. Targeted down-regulation studies revealed that EG-VEGF/Prok-1-mediated proliferation requires the presence of these two receptors, and that PK-R2 is essential for inhibiting apoptosis. In vitro migration and invasion assays also indicated that EG-VEGF/Prok-1 significantly enhances the cell migration/invasion of SK-N-SH. CONCLUSIONS: Our study has shown for the first time that aberrant EG-VEGF/Prok-1 signaling favors neuroblastoma progression and could be a potential target for future neuroblastoma treatment.[1]

References

  1. Implications of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 signaling in human neuroblastoma progression. Ngan, E.S., Sit, F.Y., Lee, K., Miao, X., Yuan, Z., Wang, W., Nicholls, J.M., Wong, K.K., Garcia-Barcelo, M., Lui, V.C., Tam, P.K. Clin. Cancer Res. (2007) [Pubmed]
 
WikiGenes - Universities