The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A novel thromboxane receptor antagonist and synthase inhibitor, BM-573, reduces development and progression of atherosclerosis in LDL receptor deficient mice.

Atherosclerosis is a chronic inflammatory disease of the vasculature influenced by a variety of mediators. Among them, prostanoids, which include prostacyclin and thromboxane (Tx) A(2), have recently received a lot of attention. Previous studies demonstrated that antagonism or deletion of the receptor for TxA(2) retards early atherogenesis in apolipoprotein E-deficient mice, but no data are available in low-density lipoprotein (LDL) receptor deficient mice. In our study, we tested the effect of a novel TxA(2) receptor (TP) antagonist and synthase inhibitor, BM-573, on atherosclerosis development and progression in LDL receptor deficient mice. To this end, the effect of 12 weeks treatment with BM-573 on early or established aortic atherosclerotic lesions of these mice was assessed. In both treatments, while BM-573 did not affect body weight, systolic blood pressure, total plasma cholesterol or triglycerides levels, it partially reduced TxA(2) but did not affect prostacyclin biosynthesis. Moreover, BM-573 significantly decreased early atherogenesis and prevented progression of established atherosclerotic lesions. These results show for the first time that this dual Tx inhibitor is effective in reducing atherogenesis in the LDL receptor deficient mice. They also demonstrate the novel concept that this therapeutic approach halts the progression of the disease and influences the cellular composition of the atherosclerotic plaques.[1]

References

 
WikiGenes - Universities