The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Thromboxane     (2R,3S)-3-heptyl-2-octyl-oxane

Synonyms: SureCN3691, AG-G-51765, HMDB03208, CTK5C5100, AR-1L6846, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Thromboxane

 

Psychiatry related information on Thromboxane

 

High impact information on Thromboxane

 

Chemical compound and disease context of Thromboxane

 

Biological context of Thromboxane

 

Anatomical context of Thromboxane

 

Associations of Thromboxane with other chemical compounds

 

Gene context of Thromboxane

  • However, the concept of simply tipping a "balance" between COX-2-derived PGI2 and COX-1-derived platelet thromboxane is misplaced [33].
  • Deletion of the gene encoding Akt2 impaired platelet aggregation, fibrinogen binding, and granule secretion, especially in response to low concentrations of agonists that activate the G(q)-coupled receptors for thrombin and thromboxane A(2) [34].
  • Pathological analyses and measurements of lipid peroxidation, tumor necrosis factor (TNF)-alpha, COX-1 and COX-2 messenger RNA (mRNA), endotoxin, and liver and plasma thromboxane were performed [35].
  • To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1 [36].
  • Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets [37].
 

Analytical, diagnostic and therapeutic context of Thromboxane

  • Platelet production of thromboxane A2 was measured with a radioimmunoassay for its stable metabolite, thromboxane B2 [38].
  • Thromboxane B2 formation in serum ex vivo after oral administration of 20 mg of unlabeled aspirin was reduced 39 per cent before aspirin was detected in the systemic circulation [39].
  • The vasoconstrictor(s) responsible for sustained rise in perfusion pressure is unknown, but is not thromboxane [40].
  • Functional role of thromboxane production by acutely rejecting renal allografts in rats [41].
  • In contrast, neither aspirin (2-100 mg/kg per d) nor dazoxiben (20-100 mg/kg per d) decreased cannula platelet consumption detectably despite the striking reduction in the capacity of platelets to produce thromboxane B2 [42].

References

  1. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. Christman, B.W., McPherson, C.D., Newman, J.H., King, G.A., Bernard, G.R., Groves, B.M., Loyd, J.E. N. Engl. J. Med. (1992) [Pubmed]
  2. Prevention of thrombosis in patients on hemodialysis by low-dose aspirin. Harter, H.R., Burch, J.W., Majerus, P.W., Stanford, N., Delmez, J.A., Anderson, C.B., Weerts, C.A. N. Engl. J. Med. (1979) [Pubmed]
  3. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. Benigni, A., Gregorini, G., Frusca, T., Chiabrando, C., Ballerini, S., Valcamonico, A., Orisio, S., Piccinelli, A., Pinciroli, V., Fanelli, R. N. Engl. J. Med. (1989) [Pubmed]
  4. Thromboxane antagonism in lupus nephritis. Kallenberg, C.G., ter Borg, E.J., Meijer, S., de Jong, P.E. N. Engl. J. Med. (1989) [Pubmed]
  5. Platelet activation in unstable coronary disease. Fitzgerald, D.J., Roy, L., Catella, F., FitzGerald, G.A. N. Engl. J. Med. (1986) [Pubmed]
  6. Changes in cardiovascular risk profile during the cessation of smoking. Terres, W., Becker, P., Rosenberg, A. Am. J. Med. (1994) [Pubmed]
  7. Increased thromboxane biosynthesis is associated with poststroke dementia. van Kooten, F., Ciabattoni, G., Koudstaal, P.J., Grobbee, D.E., Kluft, C., Patrono, C. Stroke (1999) [Pubmed]
  8. Lack of short-term effect of the thromboxane synthetase inhibitor UK-38,485 on airway reactivity to methacholine in asthmatic subjects. Gardiner, P.V., Young, C.L., Holmes, K., Hendrick, D.J., Walters, E.H. Eur. Respir. J. (1993) [Pubmed]
  9. Maternal serum thromboxane B2 concentrations do not predict improved outcomes in high-risk pregnancies in a low-dose aspirin trial. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medical Units. Hauth, J., Sibai, B., Caritis, S., VanDorsten, P., Lindheimer, M., Klebanoff, M., MacPherson, C., Landon, M., Paul, R., Miodovnik, M., Meis, P., Dombrowski, M., Thurnau, G., Walsh, S., McNellis, D., Roberts, J.M. Am. J. Obstet. Gynecol. (1998) [Pubmed]
  10. Loop diuretics causing reduction of voluntary alcohol drinking: relevance of thromboxane inhibition and opiate receptor activation? Backon, J. Alcohol Alcohol. (1986) [Pubmed]
  11. Thromboxane synthase and organ preference for metastases. Nanji, A.A. N. Engl. J. Med. (1993) [Pubmed]
  12. Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. Clarke, R.J., Mayo, G., Price, P., FitzGerald, G.A. N. Engl. J. Med. (1991) [Pubmed]
  13. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. Davì, G., Catalano, I., Averna, M., Notarbartolo, A., Strano, A., Ciabattoni, G., Patrono, C. N. Engl. J. Med. (1990) [Pubmed]
  14. Deficiency of platelet lipoxygenase activity in myeloproliferative disorders. Schafer, A.I. N. Engl. J. Med. (1982) [Pubmed]
  15. Coronary vascular occlusion mediated via thromboxane A2-prostaglandin endoperoxide receptor activation in vivo. Fitzgerald, D.J., Doran, J., Jackson, E., FitzGerald, G.A. J. Clin. Invest. (1986) [Pubmed]
  16. Predominant functional roles for thromboxane A2 and prostaglandin E2 during late nephrotoxic serum glomerulonephritis in the rat. Takahashi, K., Schreiner, G.F., Yamashita, K., Christman, B.W., Blair, I., Badr, K.F. J. Clin. Invest. (1990) [Pubmed]
  17. Indomethacin in vivo increases the sensitivity to Listeria infection in mice. A possible role for macrophage thromboxane A2 synthesis. Tripp, C.S., Needleman, P., Unanue, E.R. J. Clin. Invest. (1987) [Pubmed]
  18. Angiotensin and thromboxane in the enhanced renal adrenergic nerve sensitivity of acute renal failure. Robinette, J.B., Conger, J.D. J. Clin. Invest. (1990) [Pubmed]
  19. Conjugated estrogens for the management of bleeding associated with renal failure. Livio, M., Mannucci, P.M., Viganò, G., Mingardi, G., Lombardi, R., Mecca, G., Remuzzi, G. N. Engl. J. Med. (1986) [Pubmed]
  20. Improvement of renal function with selective thromboxane antagonism in lupus nephritis. Pierucci, A., Simonetti, B.M., Pecci, G., Mavrikakis, G., Feriozzi, S., Cinotti, G.A., Patrignani, P., Ciabattoni, G., Patrono, C. N. Engl. J. Med. (1989) [Pubmed]
  21. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. Hirsh, P.D., Hillis, L.D., Campbell, W.B., Firth, B.G., Willerson, J.T. N. Engl. J. Med. (1981) [Pubmed]
  22. Deamino-8-D-arginine vasopressin shortens the bleeding time in uremia. Mannucci, P.M., Remuzzi, G., Pusineri, F., Lombardi, R., Valsecchi, C., Mecca, G., Zimmerman, T.S. N. Engl. J. Med. (1983) [Pubmed]
  23. Directed vascular expression of the thromboxane A2 receptor results in intrauterine growth retardation. Rocca, B., Loeb, A.L., Strauss, J.F., Vezza, R., Habib, A., Li, H., FitzGerald, G.A. Nat. Med. (2000) [Pubmed]
  24. Pharmacological control of prostaglandin and thromboxane release from macrophages. Brune, K., Glatt, M., Kälin, H., Peskar, B.A. Nature (1978) [Pubmed]
  25. Selective inhibition of thromboxane A2 biosynthesis in blood platelets. Gryglewski, R.J., Zmuda, A., Korbut, R., Krecioch, E., Bieron, K. Nature (1977) [Pubmed]
  26. Vasoconstriction with thromboxane A2 induces ulceration of the gastric mucosa. Whittle, B.J., Kauffman, G.L., Moncada, S. Nature (1981) [Pubmed]
  27. Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Needleman, P., Kulkarni, P.S., Raz, A. Science (1977) [Pubmed]
  28. Differential inhibition by aspirin of vascular and platelet prostaglandin synthesis in atherosclerotic patients. Weksler, B.B., Pett, S.B., Alonso, D., Richter, R.C., Stelzer, P., Subramanian, V., Tack-Goldman, K., Gay, W.A. N. Engl. J. Med. (1983) [Pubmed]
  29. Inhibition of atherosclerosis by cod-liver oil in a hyperlipidemic swine model. Weiner, B.H., Ockene, I.S., Levine, P.H., Cuénoud, H.F., Fisher, M., Johnson, B.F., Daoud, A.S., Jarmolych, J., Hosmer, D., Johnson, M.H. N. Engl. J. Med. (1986) [Pubmed]
  30. Prostaglandin endoperoxides and thromboxane A2 can induce platelet aggregation in the absence of secretion. Charo, I.F., Feinman, R.D., Detwiler, T.C., Smith, J.B., Ingerman, C.M., Silver, M.J. Nature (1977) [Pubmed]
  31. Anisodamine inhibits thromboxane synthesis, granulocyte aggregation, and platelet aggregation. A possible mechanism for its efficacy in bacteremic shock. Xiu, R.J., Hammerschmidt, D.E., Coppo, P.A., Jacob, H.S. JAMA (1982) [Pubmed]
  32. CD69 is expressed on platelets and mediates platelet activation and aggregation. Testi, R., Pulcinelli, F., Frati, L., Gazzaniga, P.P., Santoni, A. J. Exp. Med. (1990) [Pubmed]
  33. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. Grosser, T., Fries, S., FitzGerald, G.A. J. Clin. Invest. (2006) [Pubmed]
  34. Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. Woulfe, D., Jiang, H., Morgans, A., Monks, R., Birnbaum, M., Brass, L.F. J. Clin. Invest. (2004) [Pubmed]
  35. Enhanced cyclooxygenase-2 gene expression in alcoholic liver disease in the rat. Nanji, A.A., Miao, L., Thomas, P., Rahemtulla, A., Khwaja, S., Zhao, S., Peters, D., Tahan, S.R., Dannenberg, A.J. Gastroenterology (1997) [Pubmed]
  36. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Praticò, D., Tillmann, C., Zhang, Z.B., Li, H., FitzGerald, G.A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  37. Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets. Garcia, A., Quinton, T.M., Dorsam, R.T., Kunapuli, S.P. Blood (2005) [Pubmed]
  38. Inhibition of prostacyclin and platelet thromboxane A2 after low-dose aspirin. Preston, F.E., Whipps, S., Jackson, C.A., French, A.J., Wyld, P.J., Stoddard, C.J. N. Engl. J. Med. (1981) [Pubmed]
  39. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. Pedersen, A.K., FitzGerald, G.A. N. Engl. J. Med. (1984) [Pubmed]
  40. Release of leukotriene C4 by isolated, perfused rat small intestine in response to platelet-activating factor. Hsueh, W., Gonzalez-Crussi, F., Arroyave, J.L. J. Clin. Invest. (1986) [Pubmed]
  41. Functional role of thromboxane production by acutely rejecting renal allografts in rats. Coffman, T.M., Yarger, W.E., Klotman, P.E. J. Clin. Invest. (1985) [Pubmed]
  42. Effects of platelet-modifying drugs on arterial thromboembolism in baboons. Aspirin potentiates the antithrombotic actions of dipyridamole and sulfinpyrazone by mechanism(s) independent of platelet cyclooxygenase inhibition. Hanson, S.R., Harker, L.A., Bjornsson, T.D. J. Clin. Invest. (1985) [Pubmed]
 
WikiGenes - Universities