The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Ldlr  -  low density lipoprotein receptor

Mus musculus

Synonyms: Hlb301, LDL receptor, Low-density lipoprotein receptor
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ldlr

 

High impact information on Ldlr

 

Chemical compound and disease context of Ldlr

 

Biological context of Ldlr

 

Anatomical context of Ldlr

 

Associations of Ldlr with chemical compounds

  • Thus, on day 5, plasma corticosterone levels were reduced by 57, 70, and 73% (all P < 0.05) and on day 8 by 76, 59, and 63% (all P < 0.05) in hl(-/-), Ldlr(-/-), and Ldlr(-/-)hl(-/-) mice, respectively [24].
  • This compound suppressed plasma nitrite/nitrate levels in Ldlr-/- mice and NO production and iNOS expression in LPS+IFNgamma-stimulated peritoneal macrophages [22].
  • METHODS AND RESULTS: In low-density lipoprotein (LDL) receptor-deficient (Ldlr(-/-)) mice fed an atherogenic diet for 4 or 8 weeks, trichostatin A (TSA), a specific histone deacetylase inhibitor, exacerbated atherosclerosis without alteration on plasma lipid profiles [25].
  • Our findings suggest that an extrahepatic RAP-sensitive process that is independent of the LDLR or LRP is involved in metabolism of triglyceride-rich lipoproteins [26].
  • These results indicate that the LDLR constitutes the major pathway for the clearance of retinyl ester [27].
 

Physical interactions of Ldlr

 

Enzymatic interactions of Ldlr

 

Regulatory relationships of Ldlr

 

Other interactions of Ldlr

 

Analytical, diagnostic and therapeutic context of Ldlr

References

  1. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Binder, C.J., Hörkkö, S., Dewan, A., Chang, M.K., Kieu, E.P., Goodyear, C.S., Shaw, P.X., Palinski, W., Witztum, J.L., Silverman, G.J. Nat. Med. (2003) [Pubmed]
  2. High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr-/- mice. Wilund, K.R., Yu, L., Xu, F., Hobbs, H.H., Cohen, J.C. J. Lipid Res. (2004) [Pubmed]
  3. Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet. Ou, J., Wang, J., Xu, H., Ou, Z., Sorci-Thomas, M.G., Jones, D.W., Signorino, P., Densmore, J.C., Kaul, S., Oldham, K.T., Pritchard, K.A. Circ. Res. (2005) [Pubmed]
  4. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia. Zhao, L., Cuff, C.A., Moss, E., Wille, U., Cyrus, T., Klein, E.A., Praticò, D., Rader, D.J., Hunter, C.A., Puré, E., Funk, C.D. J. Biol. Chem. (2002) [Pubmed]
  5. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. Hasty, A.H., Shimano, H., Osuga, J., Namatame, I., Takahashi, A., Yahagi, N., Perrey, S., Iizuka, Y., Tamura, Y., Amemiya-Kudo, M., Yoshikawa, T., Okazaki, H., Ohashi, K., Harada, K., Matsuzaka, T., Sone, H., Gotoda, T., Nagai, R., Ishibashi, S., Yamada, N. J. Biol. Chem. (2001) [Pubmed]
  6. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Cohen, J., Pertsemlidis, A., Kotowski, I.K., Graham, R., Garcia, C.K., Hobbs, H.H. Nat. Genet. (2005) [Pubmed]
  7. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Bates, P., Young, J.A., Varmus, H.E. Cell (1993) [Pubmed]
  8. Correction: LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Herz, J., Couthier, D.E., Hammer, R.E. Cell (1993) [Pubmed]
  9. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Wolfrum, C., Poy, M.N., Stoffel, M. Nat. Med. (2005) [Pubmed]
  10. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Bernal-Mizrachi, C., Weng, S., Feng, C., Finck, B.N., Knutsen, R.H., Leone, T.C., Coleman, T., Mecham, R.P., Kelly, D.P., Semenkovich, C.F. Nat. Med. (2003) [Pubmed]
  11. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Borradaile, N.M., de Dreu, L.E., Huff, M.W. Diabetes (2003) [Pubmed]
  12. Mice deficient in apolipoprotein E but not LDL receptors are resistant to accelerated atherosclerosis associated with obesity. Schreyer, S.A., Lystig, T.C., Vick, C.M., LeBoeuf, R.C. Atherosclerosis (2003) [Pubmed]
  13. Fenofibrate prevents obesity and hypertriglyceridemia in low-density lipoprotein receptor-null mice. Jeong, S., Kim, M., Han, M., Lee, H., Ahn, J., Kim, M., Song, Y.H., Shin, C., Nam, K.H., Kim, T.W., Oh, G.T., Yoon, M. Metab. Clin. Exp. (2004) [Pubmed]
  14. Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative infections. Netea, M.G., Demacker, P.N., Kullberg, B.J., Boerman, O.C., Verschueren, I., Stalenhoef, A.F., van der Meer, J.W. J. Clin. Invest. (1996) [Pubmed]
  15. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Nathan, L., Shi, W., Dinh, H., Mukherjee, T.K., Wang, X., Lusis, A.J., Chaudhuri, G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  16. Localization of atherosclerosis susceptibility loci to chromosomes 4 and 6 using the Ldlr knockout mouse model. Welch, C.L., Bretschger, S., Latib, N., Bezouevski, M., Guo, Y., Pleskac, N., Liang, C.P., Barlow, C., Dansky, H., Breslow, J.L., Tall, A.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  17. Liver disease with altered bile acid transport in Niemann-Pick C mice on a high-fat, 1% cholesterol diet. Erickson, R.P., Bhattacharyya, A., Hunter, R.J., Heidenreich, R.A., Cherrington, N.J. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  18. Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Nam, K.H., Choi, J.H., Seo, Y.J., Lee, Y.M., Won, Y.S., Lee, M.R., Lee, M.N., Park, J.G., Kim, Y.M., Kim, H.C., Lee, C.H., Lee, H.K., Oh, S.R., Oh, G.T. Exp. Mol. Med. (2006) [Pubmed]
  19. The role of the LDL receptor in apolipoprotein B secretion. Twisk, J., Gillian-Daniel, D.L., Tebon, A., Wang, L., Barrett, P.H., Attie, A.D. J. Clin. Invest. (2000) [Pubmed]
  20. Natural killer T cells accelerate atherogenesis in mice. Nakai, Y., Iwabuchi, K., Fujii, S., Ishimori, N., Dashtsoodol, N., Watano, K., Mishima, T., Iwabuchi, C., Tanaka, S., Bezbradica, J.S., Nakayama, T., Taniguchi, M., Miyake, S., Yamamura, T., Kitabatake, A., Joyce, S., Van Kaer, L., Onoé, K. Blood (2004) [Pubmed]
  21. Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice. Nam, K.W., Kim, J., Hong, J.J., Choi, J.H., Mar, W., Cho, M.H., Kim, Y.M., Oh, S.R., Lee, H.K., Nam, K.H., Oh, G.T. Atherosclerosis (2005) [Pubmed]
  22. Hematein inhibits atherosclerosis by inhibition of reactive oxygen generation and NF-kappaB-dependent inflammatory mediators in hyperlipidemic mice. Choi, J.H., Jeong, T.S., Kim, D.Y., Kim, Y.M., Na, H.J., Nam, K.H., Lee, S.B., Kim, H.C., Oh, S.R., Choi, Y.K., Bok, S.H., Oh, G.T. J. Cardiovasc. Pharmacol. (2003) [Pubmed]
  23. The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. Fryer, J.D., Demattos, R.B., McCormick, L.M., O'Dell, M.A., Spinner, M.L., Bales, K.R., Paul, S.M., Sullivan, P.M., Parsadanian, M., Bu, G., Holtzman, D.M. J. Biol. Chem. (2005) [Pubmed]
  24. Attenuated corticosterone response to chronic ACTH stimulation in hepatic lipase-deficient mice: evidence for a role for hepatic lipase in adrenal physiology. Dichek, H.L., Agrawal, N., Andaloussi, N.E., Qian, K. Am. J. Physiol. Endocrinol. Metab. (2006) [Pubmed]
  25. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Choi, J.H., Nam, K.H., Kim, J., Baek, M.W., Park, J.E., Park, H.Y., Kwon, H.J., Kwon, O.S., Kim, D.Y., Oh, G.T. Arterioscler. Thromb. Vasc. Biol. (2005) [Pubmed]
  26. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins. van Vlijmen, B.J., Rohlmann, A., Page, S.T., Bensadoun, A., Bos, I.S., van Berkel, T.J., Havekes, L.M., Herz, J. J. Biol. Chem. (1999) [Pubmed]
  27. Role of the low density lipoprotein (LDL) receptor pathway in the metabolism of chylomicron remnants. A quantitative study in knockout mice lacking the LDL receptor, apolipoprotein E, or both. Ishibashi, S., Perrey, S., Chen, Z., Osuga, J., Shimada, M., Ohashi, K., Harada, K., Yazaki, Y., Yamada, N. J. Biol. Chem. (1996) [Pubmed]
  28. Structure of a monoclonal 2E8 Fab antibody fragment specific for the low-density lipoprotein-receptor binding region of apolipoprotein E refined at 1.9 A. Trakhanov, S., Parkin, S., Raffaï, R., Milne, R., Newhouse, Y.M., Weisgraber, K.H., Rupp, B. Acta Crystallogr. D Biol. Crystallogr. (1999) [Pubmed]
  29. Sequence of the putative low-density lipoprotein receptor-binding regions of apolipoprotein B in mouse and hamster. Smith, T.J., Hautamaa, D., Maeda, N. Gene (1990) [Pubmed]
  30. Identification and characterization of a very low density lipoprotein receptor-binding peptide from tissue factor pathway inhibitor that has antitumor and antiangiogenic activity. Hembrough, T.A., Ruiz, J.F., Swerdlow, B.M., Swartz, G.M., Hammers, H.J., Zhang, L., Plum, S.M., Williams, M.S., Strickland, D.K., Pribluda, V.S. Blood (2004) [Pubmed]
  31. Molecular cloning and nucleotide sequence of cDNA encoding a functional murine low-density-lipoprotein receptor. Polvino, W.J., Dichek, D.A., Mason, J., Anderson, W.F. Somat. Cell Mol. Genet. (1992) [Pubmed]
  32. The expression of megalin (gp330) and LRP diverges during F9 cell differentiation. Czekay, R.P., Orlando, R.A., Woodward, L., Adamson, E.D., Farquhar, M.G. J. Cell. Sci. (1995) [Pubmed]
  33. Age-related alteration in hepatic acyl-CoA: cholesterol acyltransferase and its relation to LDL receptor and MAPK. Bose, C., Bhuvaneswaran, C., Udupa, K.B. Mech. Ageing Dev. (2005) [Pubmed]
  34. PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. Chui, P.C., Guan, H.P., Lehrke, M., Lazar, M.A. J. Clin. Invest. (2005) [Pubmed]
  35. Hypercholesterolemia exacerbates virus-induced immunopathologic liver disease via suppression of antiviral cytotoxic T cell responses. Ludewig, B., Jäggi, M., Dumrese, T., Brduscha-Riem, K., Odermatt, B., Hengartner, H., Zinkernagel, R.M. J. Immunol. (2001) [Pubmed]
  36. Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Kwak, B.R., Veillard, N., Pelli, G., Mulhaupt, F., James, R.W., Chanson, M., Mach, F. Circulation (2003) [Pubmed]
  37. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Buono, C., Pang, H., Uchida, Y., Libby, P., Sharpe, A.H., Lichtman, A.H. Circulation (2004) [Pubmed]
  38. The mouse low density lipoprotein receptor gene: cDNA sequence and exon-intron structure. Hoffer, M.J., van Eck, M.M., Petrij, F., van der Zee, A., de Wit, E., Meijer, D., Grosveld, G., Havekes, L.M., Hofker, M.H., Frants, R.R. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  39. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. Babaev, V.R., Patel, M.B., Semenkovich, C.F., Fazio, S., Linton, M.F. J. Biol. Chem. (2000) [Pubmed]
  40. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Gu, L., Okada, Y., Clinton, S.K., Gerard, C., Sukhova, G.K., Libby, P., Rollins, B.J. Mol. Cell (1998) [Pubmed]
  41. Cholesterol lowering in low density lipoprotein receptor knockout mice overexpressing apolipoprotein E. Osuga, J., Yonemoto, M., Yamada, N., Shimano, H., Yagyu, H., Ohashi, K., Harada, K., Kamei, T., Yazaki, Y., Ishibashi, S. J. Clin. Invest. (1998) [Pubmed]
  42. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. Boisvert, W.A., Santiago, R., Curtiss, L.K., Terkeltaub, R.A. J. Clin. Invest. (1998) [Pubmed]
  43. LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. Tacken, P.J., Teusink, B., Jong, M.C., Harats, D., Havekes, L.M., van Dijk, K.W., Hofker, M.H. J. Lipid Res. (2000) [Pubmed]
  44. Atherosclerosis is enhanced by testosterone deficiency and attenuated by CETP expression in transgenic mice. Casquero, A.C., Berti, J.A., Salerno, A.G., Bighetti, E.J., Cazita, P.M., Ketelhuth, D.F., Gidlund, M., Oliveira, H.C. J. Lipid Res. (2006) [Pubmed]
  45. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice. Yu, K.C., Chen, W., Cooper, A.D. J. Clin. Invest. (2001) [Pubmed]
  46. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Versluis, A.J., Rensen, P.C., Rump, E.T., Van Berkel, T.J., Bijsterbosch, M.K. Br. J. Cancer (1998) [Pubmed]
  47. Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Van Eck, M., Singaraja, R.R., Ye, D., Hildebrand, R.B., James, E.R., Hayden, M.R., Van Berkel, T.J. Arterioscler. Thromb. Vasc. Biol. (2006) [Pubmed]
 
WikiGenes - Universities