Kininogen and kinin in experimental spinal cord injury.
Activation of the kallikrein-kinin system has been implicated in the pathogenesis of vasogenic brain edema and posttraumatic vascular injury. We determined the levels of kininogen and kinin in an experimental spinal cord injury model in the rat. Kininogen content in traumatized cord segments increased in a time-dependent manner. Western blot analysis showed that the kininogen in traumatized cord comigrates with 68K low-molecular-weight kininogen or T-kininogen. Trypsin treatment of the kininogen in traumatized cord released both bradykinin and T-kinin, which were separated by HPLC and quantified with a kinin radioimmunoassay. Endogenous kinin levels in the frozen spinal cord also increased up to 40-fold 2 h after injury as compared with controls. The results demonstrate an increased accumulation of kininogen and its conversion to vasoactive kinins in experimental spinal cord injury.[1]References
- Kininogen and kinin in experimental spinal cord injury. Xu, J., Hsu, C.Y., Junker, H., Chao, S., Hogan, E.L., Chao, J. J. Neurochem. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg