The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of interleukin-9 on clonogenic maturation and cell-cycle status of fetal and adult hematopoietic progenitors.

We assessed the effect of interleukin-9 (IL-9) on clonogenic maturation and cell-cycle status of hematopoietic progenitors of fetal (umbilical cord blood) and adult (bone marrow) origin. As a single agent IL-9 supported, in a concentration-dependent fashion, maturation of burst-forming units-erythroid (BFU-E) of adult and fetal origin. However, only 1/3 the number of adult BFU-E colonies developed, as did in response to granulocyte-macrophage colony-stimulating factor (GM-CSF), and only 1/6 the number developed as did in response to IL-3. In contrast, the effect of IL-9 on fetal BFU-E colonies was equal to that of GM-CSF and IL-3. Synergistic effects of IL-9 with low concentrations (0.1 ng/mL) of GM-CSF and IL-3 were seen on adult BFU-E colony formation, but no effect was apparent at higher concentrations (1.0 ng/mL). In contrast, using fetal cells, synergistic effects of IL-9 with low and high concentrations of GM-CSF and IL-3 were apparent. Addition of IL-9 to plates containing fetal cells plus GM-CSF and IL-3 not only resulted in more BFU-E colonies, but also in more multicentered (greater than or equal to 10 individual centers) colonies, and more cells per colony. IL-9 had a wider spectrum of action on progenitors of fetal origin than on progenitors of adult origin, supporting the generation of fetal multipotent colony-forming unit (CFU)-Mix and CFU-GM colonies. Incubation with IL-9 did not accelerate cycling of adult or fetal BFU-E, CFU-Mix, or CFU-GM to the extent observed after incubation with IL-6. Thus, IL-9 primarily supported maturation of erythroid progenitors of adult origin, and its addition to plates containing GM-CSF and IL-3 (1.0 ng/mL) did not result in maturation of additional clones. In contrast, IL-9 had a wider spectrum of action on fetal progenitors and, when combined with IL-3 and GM-CSF, resulted in clonogenic maturation of progenitors that did not undergo maturation after stimulation with IL-3 and GM-CSF.[1]

References

  1. Effect of interleukin-9 on clonogenic maturation and cell-cycle status of fetal and adult hematopoietic progenitors. Holbrook, S.T., Ohls, R.K., Schibler, K.R., Yang, Y.C., Christensen, R.D. Blood (1991) [Pubmed]
 
WikiGenes - Universities