The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Erythroid Progenitor Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Erythroid Progenitor Cells

 

High impact information on Erythroid Progenitor Cells

  • FLVCR is upregulated on CFU-E, indicating that heme export is important in primary cells at this stage [6].
  • Thus, neither EPO nor the EPOR is required for erythroid lineage commitment or for the proliferation and differentiation of BFU-E to CFU-E progenitors [7].
  • EPO and the EPOR are crucial in vivo for the proliferation and survival of CFU-E progenitors and their irreversible terminal differentiation [7].
  • Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor [7].
  • Committed erythroid BFU-E and CFU-E progenitors were present in both homozygous fetal livers [7].
 

Chemical compound and disease context of Erythroid Progenitor Cells

 

Biological context of Erythroid Progenitor Cells

  • 5. In contrast, in the fetal liver, definitive erythropoiesis beyond the late progenitor (CFU-E) stage was drastically inhibited by the EpoR mutation, and virtually no definitive erythrocytes were produced in vivo, leading to embryonic death by E13 [13].
  • Thus, in vivo, TGF-beta 1 might serve, in part, to decrease the number of mature erythrocytes by stimulating BFU-E to skip a number of cell divisions and differentiate early [14].
  • We show that a 3.3 kbp DNA region upstream of the folate receptor gene is sufficient to induce strong expression of a transgene in CFU-E stage cells [15].
  • The pathogenic human parvovirus B19 is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells [16].
  • Apoptosis in response to epo deprivation was evaluated by enumeration of colony-forming unit-erythroid (CFU-E)- and burst-forming unit-erythroid (BFU-E)-derived colonies in plasma clot semisolid culture and by the identification of typical DNA oligosomes by gel electrophoresis from marrow mononuclear cells in liquid culture [17].
 

Anatomical context of Erythroid Progenitor Cells

 

Associations of Erythroid Progenitor Cells with chemical compounds

 

Gene context of Erythroid Progenitor Cells

  • Thus, the GATA-2 transcription factor appears to play a role in regulating the self-renewal capacity of early erythroid progenitor cells [27].
  • Erythroid colonies derived from A-T-MNC in the presence of Epo (CFU-E) were not inhibited upon antisense treatment, whereas those arising from A-T-MNC or CD34+ cells in the presence of IL-3 + Epo (BFU-E) were markedly affected [28].
  • DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte-macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively [29].
  • At the same concentration, Ro 25-6603 and Ro 25-7386 had little or no effect on G-CSF-induced colony formation, whereas they inhibited 75% and 53%, respectively, of SCF + Epo-stimulated BFU-E colony growth [30].
  • MGF was a potent enhancing cytokine for Epo-dependent CFU-GEMM and BFU-E colony formation, stimulating more colonies and of a larger size than either rhu interleukin-3 (rhuIL-3) or rhuGM-CSF [31].
 

Analytical, diagnostic and therapeutic context of Erythroid Progenitor Cells

References

  1. Cellular site and mode of Fv-2 gene action. Behringer, R.R., Dewey, M.J. Cell (1985) [Pubmed]
  2. Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. Dai, C.H., Krantz, S.B., Means, R.T., Horn, S.T., Gilbert, H.S. J. Clin. Invest. (1991) [Pubmed]
  3. Erythroleukemia cells: variants inducible for hemoglobin synthesis without commitment to terminal cell division. Marks, P.A., Chen, Z., Banks, J., Rifkind, R.A. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  4. Isolation and induction of erythroleukemic cell lines with properties of erythroid progenitor burst-forming cell (BFU-E) and erythroid precursor cell (CFU-E). Shibuya, T., Mak, T.W. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  5. Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Kajigaya, S., Fujii, H., Field, A., Anderson, S., Rosenfeld, S., Anderson, L.J., Shimada, T., Young, N.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  6. Identification of a human heme exporter that is essential for erythropoiesis. Quigley, J.G., Yang, Z., Worthington, M.T., Phillips, J.D., Sabo, K.M., Sabath, D.E., Berg, C.L., Sassa, S., Wood, B.L., Abkowitz, J.L. Cell (2004) [Pubmed]
  7. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Wu, H., Liu, X., Jaenisch, R., Lodish, H.F. Cell (1995) [Pubmed]
  8. Lack of evidence for infection of or effect on growth of hematopoietic progenitor cells after in vivo or in vitro exposure to human immunodeficiency virus. Molina, J.M., Scadden, D.T., Sakaguchi, M., Fuller, B., Woon, A., Groopman, J.E. Blood (1990) [Pubmed]
  9. Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells. Sui, X., Krantz, S.B., Zhao, Z. Blood (1997) [Pubmed]
  10. Retinoid X receptor and c-cerbA/thyroid hormone receptor regulate erythroid cell growth and differentiation. Bartůnĕk, P., Zenke, M. Mol. Endocrinol. (1998) [Pubmed]
  11. Erythropoietin deficiency and inhibition of erythropoiesis in renal insufficiency. McGonigle, R.J., Wallin, J.D., Shadduck, R.K., Fisher, J.W. Kidney Int. (1984) [Pubmed]
  12. Prevention of tubercidin host toxicity by nitrobenzylthioinosine 5'-monophosphate for the treatment of schistosomiasis. el Kouni, M.H., Diop, D., O'Shea, P., Carlisle, R., Sommadossi, J.P. Antimicrob. Agents Chemother. (1989) [Pubmed]
  13. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Lin, C.S., Lim, S.K., D'Agati, V., Costantini, F. Genes Dev. (1996) [Pubmed]
  14. Transforming growth factor beta 1 is an inducer of erythroid differentiation. Krystal, G., Lam, V., Dragowska, W., Takahashi, C., Appel, J., Gontier, A., Jenkins, A., Lam, H., Quon, L., Lansdorp, P. J. Exp. Med. (1994) [Pubmed]
  15. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. Prioleau, M.N., Nony, P., Simpson, M., Felsenfeld, G. EMBO J. (1999) [Pubmed]
  16. Parvovirus B19 promoter at map unit 6 confers autonomous replication competence and erythroid specificity to adeno-associated virus 2 in primary human hematopoietic progenitor cells. Wang, X.S., Yoder, M.C., Zhou, S.Z., Srivastava, A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  17. Erythroid failure in Diamond-Blackfan anemia is characterized by apoptosis. Perdahl, E.B., Naprstek, B.L., Wallace, W.C., Lipton, J.M. Blood (1994) [Pubmed]
  18. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Helgason, C.D., Damen, J.E., Rosten, P., Grewal, R., Sorensen, P., Chappel, S.M., Borowski, A., Jirik, F., Krystal, G., Humphries, R.K. Genes Dev. (1998) [Pubmed]
  19. Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. Zhou, S.Z., Cooper, S., Kang, L.Y., Ruggieri, L., Heimfeld, S., Srivastava, A., Broxmeyer, H.E. J. Exp. Med. (1994) [Pubmed]
  20. Stem cell deficiencies and thymic abnormalities in fetal mouse trisomy 16. Epstein, C.J., Hofmeister, B.G., Yee, D., Smith, S.A., Philip, R., Cox, D.R., Epstein, L.B. J. Exp. Med. (1985) [Pubmed]
  21. T gamma (T gamma) cells suppress growth of erythroid colony-forming units in vitro in the pure red cell aplasia of B-cell chronic lymphocytic leukemia. Mangan, K.F., Chikkappa, G., Farley, P.C. J. Clin. Invest. (1982) [Pubmed]
  22. Identification of three accessory cell populations in human bone marrow with erythroid burst-promoting properties. Linch, D.C., Lipton, J.M., Nathan, D.G. J. Clin. Invest. (1985) [Pubmed]
  23. Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Gasson, J.C., Golde, D.W., Kaufman, S.E., Westbrook, C.A., Hewick, R.M., Kaufman, R.J., Wong, G.G., Temple, P.A., Leary, A.C., Brown, E.L. Nature (1985) [Pubmed]
  24. Differential response of early erythropoietic and granulopoietic progenitors to dexamethasone and cortisone. Zalman, F., Maloney, M.A., Patt, H.M. J. Exp. Med. (1979) [Pubmed]
  25. The influence of steroid hormone metabolites on the in vitro development of erythroid colonies derived from human bone marrow. Urabe, A., Sassa, S., Kappas, A. J. Exp. Med. (1979) [Pubmed]
  26. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. Cokic, V.P., Smith, R.D., Beleslin-Cokic, B.B., Njoroge, J.M., Miller, J.L., Gladwin, M.T., Schechter, A.N. J. Clin. Invest. (2003) [Pubmed]
  27. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Briegel, K., Lim, K.C., Plank, C., Beug, H., Engel, J.D., Zenke, M. Genes Dev. (1993) [Pubmed]
  28. Growth factor-dependent inhibition of normal hematopoiesis by N-ras antisense oligodeoxynucleotides. Skorski, T., Szczylik, C., Ratajczak, M.Z., Malaguarnera, L., Gewirtz, A.M., Calabretta, B. J. Exp. Med. (1992) [Pubmed]
  29. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Gregory, J.J., Wagner, J.E., Verlander, P.C., Levran, O., Batish, S.D., Eide, C.R., Steffenhagen, A., Hirsch, B., Auerbach, A.D. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  30. The RAR-RXR as well as the RXR-RXR pathway is involved in signaling growth inhibition of human CD34+ erythroid progenitor cells. Rusten, L.S., Dybedal, I., Blomhoff, H.K., Blomhoff, R., Smeland, E.B., Jacobsen, S.E. Blood (1996) [Pubmed]
  31. Effect of murine mast cell growth factor (c-kit proto-oncogene ligand) on colony formation by human marrow hematopoietic progenitor cells. Broxmeyer, H.E., Cooper, S., Lu, L., Hangoc, G., Anderson, D., Cosman, D., Lyman, S.D., Williams, D.E. Blood (1991) [Pubmed]
  32. Angiotensin II stimulates proliferation of normal early erythroid progenitors. Mrug, M., Stopka, T., Julian, B.A., Prchal, J.F., Prchal, J.T. J. Clin. Invest. (1997) [Pubmed]
  33. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-alpha antibody therapy. Papadaki, H.A., Kritikos, H.D., Valatas, V., Boumpas, D.T., Eliopoulos, G.D. Blood (2002) [Pubmed]
  34. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Simmons, P.J., Masinovsky, B., Longenecker, B.M., Berenson, R., Torok-Storb, B., Gallatin, W.M. Blood (1992) [Pubmed]
  35. Differential binding of erythroid and myeloid progenitors to fibroblasts and fibronectin. Tsai, S., Patel, V., Beaumont, E., Lodish, H.F., Nathan, D.G., Sieff, C.A. Blood (1987) [Pubmed]
 
WikiGenes - Universities