Phenylarsine oxide causes an insulin-dependent, GLUT4-specific degradation in rat adipocytes.
An incubation of rat adipocytes with phenylarsine oxide (PAO) and then with insulin caused an inhibition of 3-O-methylglucose equilibrium exchange flux and a parallel reduction in cellular GLUT4 content detected by Western blots. Both the transport inhibition and the GLUT4 reduction were saturable with an increasing concentration of PAO showing essentially an identical Ki value of 35 microM. Both effects were not observed in the absence of insulin or if cells were incubated with insulin first. The reduction was specific to GLUT4; the immunoreactivities of GLUT1, insulin receptor, and clathrin were not affected in these experiments. The GLUT4 reduction occurred only in intact cells and was not observed in homogenized cells or fractionated membranes. GLUT4 in both the microsomal storage pool and the plasma membrane pool were affected with no indication of insulin-induced recruitment impairment. GLUT4 reduction was not observed in the presence of chloroquine or at 18 degrees C suggesting involvement of the lysosomal pathway. Based on these results, we propose that there is a PAO-sensitive protein mechanism that controls an insulin-dependent GLUT4 degradation pathway in adipocytes. This protein mechanism and the GLUT4 degradation pathway may play an important role in determining the steady-state GLUT4 level in the insulin-sensitive peripheral tissues in normal and diseased states.[1]References
- Phenylarsine oxide causes an insulin-dependent, GLUT4-specific degradation in rat adipocytes. Jhun, B.H., Hah, J.S., Jung, C.Y. J. Biol. Chem. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg