The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

3-O-Methyl-d-glucose     (2R,3S,4R,5R)-2,4,5,6- tetrahydroxy-3...

Synonyms: Methylglucose, AG-K-77638, CHEBI:73918, CTK0H9772, AR-1F4466, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 3-O-Methyl-d-glucose

 

High impact information on 3-O-Methyl-d-glucose

 

Chemical compound and disease context of 3-O-Methyl-d-glucose

  • Glucose infusion into normal rats produced a similar decrease in 3-O-methylglucose transport constants suggesting that hyperglycemia was responsible for the early decrease in facilitated transport found in the diabetic rats [11].
  • Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors [12].
  • S-Trifluoracetonyl-coenzyme A and S-trifluoroacetonylmercaptoethanol form weak to moderately strong complexes with alpha-cyclodextrin and show little or no interaction with the methylglucose polysaccharide and lipopolysaccharides from Mycobacterium smegmatis [Smith, W. L., & Ballou, C. E. (1973) J. Biol. Chem. 248, 7118] [13].
  • Mutants of Mycobacterium smegmatis were selected for resistance to ethionine in an effort to obtain methylation-defective strains that were altered in their ability to make methylmannose polysaccharides (MMP) or methylglucose lipopolysaccharides [14].
  • Vehicle-treated control rats (CR) and rats that were injected with STZ (STZR) after pretreatment with 3-O-methylglucose (3-OMG), an agent that prevents STZ-induced hyperglycemia, were also studied [15].
 

Biological context of 3-O-Methyl-d-glucose

 

Anatomical context of 3-O-Methyl-d-glucose

 

Associations of 3-O-Methyl-d-glucose with other chemical compounds

 

Gene context of 3-O-Methyl-d-glucose

 

Analytical, diagnostic and therapeutic context of 3-O-Methyl-d-glucose

References

  1. The control of sugar uptake by metabolic demand in isolated adult rat heart cells. Haworth, R.A., Berkoff, H.A. Circ. Res. (1986) [Pubmed]
  2. Hyperglycemia activates glucose transport in rat skeletal muscle via a Ca(2+)-dependent mechanism. Nolte, L.A., Rincón, J., Wahlström, E.O., Craig, B.W., Zierath, J.R., Wallberg-Henriksson, H. Diabetes (1995) [Pubmed]
  3. Chlorozocin. A diabetogenic analogue of streptozocin with dissimilar mechanisms of action on pancreatic beta cells. Mossman, B.T., Wilson, G.L., Craighead, J.E. Diabetes (1985) [Pubmed]
  4. C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin receptor and tyrosine kinase activation. Zierath, J.R., Handberg, A., Tally, M., Wallberg-Henriksson, H. Diabetologia (1996) [Pubmed]
  5. Insulin treatment reverses the postreceptor defect in adipocyte 3-O-methylglucose transport in type II diabetes mellitus. Scarlett, J.A., Kolterman, O.G., Ciaraldi, T.P., Kao, M., Olefsky, J.M. J. Clin. Endocrinol. Metab. (1983) [Pubmed]
  6. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Johnson, J.H., Ogawa, A., Chen, L., Orci, L., Newgard, C.B., Alam, T., Unger, R.H. Science (1990) [Pubmed]
  7. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. Vergauwen, L., Hespel, P., Richter, E.A. J. Clin. Invest. (1994) [Pubmed]
  8. Glucose-induced microvascular functional changes in nondiabetic rats are stereospecific and are prevented by an aldose reductase inhibitor. Williamson, J.R., Ostrow, E., Eades, D., Chang, K., Allison, W., Kilo, C., Sherman, W.R. J. Clin. Invest. (1990) [Pubmed]
  9. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity. Kahn, B.B., Simpson, I.A., Cushman, S.W. J. Clin. Invest. (1988) [Pubmed]
  10. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. Dohm, G.L., Tapscott, E.B., Pories, W.J., Dabbs, D.J., Flickinger, E.G., Meelheim, D., Fushiki, T., Atkinson, S.M., Elton, C.W., Caro, J.F. J. Clin. Invest. (1988) [Pubmed]
  11. Onset of changes in glucose transport across ocular barriers in streptozotocin-induced diabetes. DiMattio, J., Zadunaisky, J.A., Altszuler, N. Invest. Ophthalmol. Vis. Sci. (1984) [Pubmed]
  12. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors. Graff, J.C., Wohlhueter, R.M., Plagemann, P.G. J. Cell. Physiol. (1978) [Pubmed]
  13. S-trifluoroacetonyl-coenzyme A:a 19F analogue of acetyl-coenzyme A. Yabusaki, K.K., Ballou, C.E. Biochemistry (1978) [Pubmed]
  14. Polymethylpolysaccharide synthesis in an ethionine-resistant mutant of Mycobacterium smegmatis. Maloney, D.H., Ballou, C.E. J. Bacteriol. (1980) [Pubmed]
  15. Limited capacity for renal vasodilatation in anesthetized diabetic rats. Ha, H., Dunham, E.W. Am. J. Physiol. (1987) [Pubmed]
  16. Degradation, receptor binding affinity, and potency of insulin from the Atlantic hagfish (Myxine glutinosa) determined in isolated rat fat cells. Gammeltoft, S., Gliemann, J. J. Biol. Chem. (1977) [Pubmed]
  17. Increased permeability to sugar following muscle contraction. Inhibitors of protein synthesis prevent reversal of the increase in 3-methylglucose transport rate. Garthwaite, S.M., Holloszy, J.O. J. Biol. Chem. (1982) [Pubmed]
  18. Stimulation of 3-O-methylglucose transport by anaerobiosis in rat thymocytes. Reeves, J.P. J. Biol. Chem. (1975) [Pubmed]
  19. Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism. Shepherd, P.R., Nave, B.T., Rincon, J., Haigh, R.J., Foulstone, E., Proud, C., Zierath, J.R., Siddle, K., Wallberg-Henriksson, H. Diabetologia (1997) [Pubmed]
  20. Insulin binding and insulin action in rat fat cells after adrenalectomy. Häring, H., Calle, C., Bug, A., Renner, R., Hepp, K.D., Kemmler, W. Diabetologia (1980) [Pubmed]
  21. Identification of the stereospecific hexose transporter from starved and fed chicken embryo fibroblasts. Pessin, J.E., Tillotson, L.G., Yamada, K., Gitomer, W., Carter-Su, C., Mora, R., Isselbacher, K.J., Czech, M.P. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  22. Intracellular monosaccharide and amino acid concentrations and activities and the mechanisms of insulin action. Horowitz, S.B., Pearson, T.W. Mol. Cell. Biol. (1981) [Pubmed]
  23. Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. Hjeltnes, N., Galuska, D., Björnholm, M., Aksnes, A.K., Lannem, A., Zierath, J.R., Wallberg-Henriksson, H. FASEB J. (1998) [Pubmed]
  24. Modulation of basal glucose transporter Km in the adipocyte by insulin and other factors. Whitesell, R.R., Abumrad, N.A. J. Biol. Chem. (1986) [Pubmed]
  25. Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes. Zierath, J.R., Frevert, E.U., Ryder, J.W., Berggren, P.O., Kahn, B.B. Diabetes (1998) [Pubmed]
  26. Glucose and 3-O-methylglucose protection against alloxan poisoning of pancreatic alpha and beta cells. Pagliara, A.S., Stillings, S.N., Zawalich, W.S., Williams, A.D., Matchinsky, F.M. Diabetes (1977) [Pubmed]
  27. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. Harrison, S.A., Buxton, J.M., Clancy, B.M., Czech, M.P. J. Biol. Chem. (1991) [Pubmed]
  28. Sugar regulates mRNA abundance of H(+)-ATPase gene family members in tomato. Mito, N., Wimmers, L.E., Bennett, A.B. Plant Physiol. (1996) [Pubmed]
  29. Effect of cutting on solute uptake by plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves. Sakr, S., Lemoine, R., Gaillard, C., Delrot, S. Plant Physiol. (1993) [Pubmed]
  30. Comparison of glucose and fructose transport into adipocytes of the rat. Halperin, M.L., Cheema-Dhadli, S. Biochem. J. (1982) [Pubmed]
  31. A novel insulin analog with unique properties: LysB3,GluB29 insulin induces prominent activation of insulin receptor substrate 2, but marginal phosphorylation of insulin receptor substrate 1. Rakatzi, I., Ramrath, S., Ledwig, D., Dransfeld, O., Bartels, T., Seipke, G., Eckel, J. Diabetes (2003) [Pubmed]
  32. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Somwar, R., Kim, D.Y., Sweeney, G., Huang, C., Niu, W., Lador, C., Ramlal, T., Klip, A. Biochem. J. (2001) [Pubmed]
  33. Insulin-like growth factor II stimulates glucose transport in human skeletal muscle. Zierath, J.R., Bang, P., Galuska, D., Hall, K., Wallberg-Henriksson, H. FEBS Lett. (1992) [Pubmed]
  34. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Levine, K.B., Robichaud, T.K., Hamill, S., Sultzman, L.A., Carruthers, A. Biochemistry (2005) [Pubmed]
  35. The hemopoietic growth factor, interleukin-3, promotes glucose transport by increasing the specific activity and maintaining the affinity for glucose of plasma membrane glucose transporters. McCoy, K.D., Ahmed, N., Tan, A.S., Berridge, M.V. J. Biol. Chem. (1997) [Pubmed]
  36. Increased muscle glucose uptake after exercise. No need for insulin during exercise. Richter, E.A., Ploug, T., Galbo, H. Diabetes (1985) [Pubmed]
  37. Specific immunity to streptozocin. Cellular requirements for induction of lymphoproliferation. Klinkhammer, C., Popowa, P., Gleichmann, H. Diabetes (1988) [Pubmed]
  38. Acute inhibition of insulin-stimulated glucose transport by the phosphatase inhibitor, okadaic acid. Corvera, S., Jaspers, S., Pasceri, M. J. Biol. Chem. (1991) [Pubmed]
  39. PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. Haberkorn, U., Bellemann, M.E., Altmann, A., Gerlach, L., Morr, I., Oberdorfer, F., Brix, G., Doll, J., Blatter, J., van Kaick, G. J. Nucl. Med. (1997) [Pubmed]
  40. Affinity purification of mycobacterial polymethyl polysaccharides and a study of polysaccharide-lipid interactions by 1H NMR. Hindsgaul, O., Ballou, C.E. Biochemistry (1984) [Pubmed]
 
WikiGenes - Universities