The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of (+)-1,2-bis(3,5-dioxopiperazin-1-yl)propane (ADR-529) on iron-catalyzed lipid peroxidation.

ADR-529 [(+)-1,2-bis(3,5-dioxopiperazin-1-yl)propane], a nonpolar, cyclic analogue of EDTA, protects against anthracycline cardiotoxicity in vivo. The protective mechanism presumably involves chelation of iron by a hydrolysis product of ADR-529, thus preventing the formation of reactive iron/oxygen species which can damage membrane lipids. We investigated the effects of ADR-529 and its hydrolysis products (the tetraacid and the diacid diamide) on NADPH- and ADP-Fe(3+)-dependent lipid peroxidation of rat liver microsomes and liposomes in the presence of cytochrome P-450 reductase. Hydrolyzed ADR-529 products caused inhibition of lipid peroxidation when in excess of the iron concentration. However, no inhibition of lipid peroxidation was detected by similar concentrations of nonhydrolyzed ADR-529. Microsomes did not affect the inhibition of lipid peroxidation, suggesting that rat liver microsomes do not hydrolyze ADR-529. Similarly, the diacid diamide hydrolysis product of ADR-529 inhibited ferritin- and adriamycin-iron-dependent liposomal lipid peroxidation in a concentration-dependent manner. No correlation between partially reduced oxygen species (O2.- and .OH; as measured by electron spin resonance) and lipid peroxidation (as assayed by malondialdehyde formation) was observed, suggesting that liposomal lipid peroxidation was strictly an iron-dependent phenomenon. These results suggest that inhibition of lipid peroxidation by iron chelation may be related to the protective effects of ADR-529 on in vivo anthracycline toxicity.[1]


  1. Effects of (+)-1,2-bis(3,5-dioxopiperazin-1-yl)propane (ADR-529) on iron-catalyzed lipid peroxidation. Ryan, T.P., Samokyszyn, V.M., Dellis, S., Aust, S.D. Chem. Res. Toxicol. (1990) [Pubmed]
WikiGenes - Universities