Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis.
One of the profound changes in cellular morphology which occurs during mitosis is a massive alteration in the organization of the microfilament cytoskeleton. This change, together with other mitotic events including nuclear membrane breakdown, chromosome condensation and formation of mitotic spindles, is induced by a molecular complex called maturation promoting factor. This consists of at least two subunits, a polypeptide of relative molecular mass 45,000-62,000 (Mr 45-62K) known as cyclin, and a 34K catalytic subunit which has serine/threonine kinase activity and is known as cdc2 kinase. Non-muscle caldesmon, an 83K actin- and calmodulin-binding protein, is dissociated from microfilaments during mitosis, apparently as a consequence of mitosis-specific phosphorylation. We now report that cdc2 kinase phosphorylates caldesmon in vitro principally at the same sites as those phosphorylated in vivo during mitosis, and that phosphorylation reduces the binding affinity of caldesmon for both actin and calmodulin. Because caldesmon inhibits actomyosin ATPase, our results suggest that cdc2 kinase directly causes microfilament reorganization during mitosis.[1]References
- Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Yamashiro, S., Yamakita, Y., Hosoya, H., Matsumura, F. Nature (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg