The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Zinc oxide particles induce inflammatory responses in vascular endothelial cells via NF-κB signaling.

This study investigated inflammatory effects of zinc oxide (ZnO) particles on vascular endothelial cells. The effects of 50 and 100-nm ZnO particles on human umbilical vein endothelial cells (HUVECs) were characterized by assaying cytotoxicity, cell proliferation, and glutathione levels. A marked drop in survival rate was observed when ZnO concentration was increased to 45 μg/ml. ZnO concentrations of ≤3 μg/ml resulted in increased cell proliferation, while those of ≤45 μg/ml caused dose-dependent increases in oxidized glutathione levels. Treatments with ZnO concentrations ≤45 μg/ml were performed to determine the expression of intercellular adhesion molecule-1 (ICAM-1) protein, an indicator of vascular endothelium inflammation, revealing that ZnO particles induced a dose-dependent increase in ICAM-1 expression and marked increases in NF-κB reporter activity. Overexpression of IκBα completely inhibited ZnO-induced ICAM-1 expression, suggesting NF-κB plays a pivotal role in regulation of ZnO-induced inflammation in HUVECs. Additionally, TNF-α, a typical inflammatory cytokine, induced ICAM-1 expression in an NF-κB-dependent manner, and ZnO synergistically enhanced TNF-α-induced ICAM-1 expression. Both 50 and 100-nm ZnO particles agglomerated to similar size distributions. This study reveals an important role for ZnO in modulating inflammatory responses of vascular endothelial cells via NF-κB signaling, which could have important implications for treatments of vascular disease.[1]

References

  1. Zinc oxide particles induce inflammatory responses in vascular endothelial cells via NF-κB signaling. Tsou, T.C., Yeh, S.C., Tsai, F.Y., Lin, H.J., Cheng, T.J., Chao, H.R., Tai, L.A. J. Hazard. Mater. (2010) [Pubmed]
 
WikiGenes - Universities