The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

GFAP mRNA levels following stab wounds in rat brain.

We previously reported that glial fibrillary acidic protein (GFAP) levels increased significantly at 3 days after stab wounds, relative to sham-operated controls, reaching a maximum of 200% of control value at 5-7 days. They then fell to near-normal values by 21 days. To determine whether these protein changes correlated with changes in GFAP mRNA we performed Northern blot analyses. Total RNA, isolated from lesioned, sham-operated and intact rat forebrains, was hybridized with 32P-labeled mouse GFAP cDNA and quantified by densitometry. The maximum increase in total RNA content in lesioned animals was only 20% over controls at 12 h. GFAP mRNA levels increased to 2-fold control values at 6 h and reached 5-fold at 12 h. Thereafter they remained at 3.5- to 6-fold until 5 days and then declined to 1.5-fold by 21 days. The rapid increase of GFAP message at 12 h preceded a significant increase in GFAP by 2 days and the decrease of message after 5 days was more precipitate than the slow decrease in GFAP content. Sham-operated animals showed no significant changes in GFAP mRNA, compared to intact controls, during the period 3 h to 14 days postoperation. GFAP mRNA and GFAP in the stab-wound model reached levels similar to those found in the experimental autoimmune encephalomyelitis (EAE) model, but returned to normal much more rapidly.[1]

References

  1. GFAP mRNA levels following stab wounds in rat brain. Hozumi, I., Aquino, D.A., Norton, W.T. Brain Res. (1990) [Pubmed]
 
WikiGenes - Universities