The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

(+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes.

(+/-)-[3H]Epinephrine binds to beta-receptors in calf cerebellar and rat lung membranes in the presence of 1.0 mM pyrocatechol and 1.0 microM phentolamine, with dissociation constants at 4 degrees C of 11 nM and 24 nM, respectively. (+/-)-[3H]Epinephrine associates to equilibrium within 20 min in both tissues, and over 50% of the binding is rapidly dissociable. Inhibition of binding by agonists and antagonists is highly stereoselective, and the structure-activity relationships of adrenergic agents in inhibiting (+/-)-[3H]epinephrine binding suggest an interaction with beta2 type noradrenergic receptors. (-)-Isoproterenol has an apparent Ki of 2 nM, (-)-epinephrine is 1.5 to 3 times weaker, and (-)-norepinephrine is 30 to 60 times weaker. Salbutamol and terbutaline, selective beta2-agonists, are potent inhibitors of binding, as are several nonspecific antagonists. Properties of the sites labeled by (+/-)-[3H]epinephrine in calf cerebellum and rat lung are closely similar. (-)-[3H]Dihydroalprenolol binding in calf cerebellum and rat lung also shows beta2 characteristics. Antagonists have similar potencies in inhibiting (-)-[3H]dihydroalprenolol and (+/-)-[3H]epinephrine binding in both tissues, but agonists are in general more potent inhibitors of (+/-)-[3H]epinephrine. Sodium and lithium selectively lower the affinity of (+/-)-[3H]epinephrine at its binding sites and the affinities of agonists, but not antagonists, at the (-)-[3H]dihydroalprenolol site. Specific (+/-)-[3H]epinephrine binding was not detectable in calf cortex and rat heart, where (-)-[3H]dihydroalprenolol binding suggests a beta1-receptor. A physiological significance of (+/-)-[3H]epinephrine binding is suggested by the strong correlation for agonists and antagonists between affinities in inhibiting binding, and in stimulating or inhibiting a beta-receptor-coupled adenylate cyclase in frog erythrocytes.[1]

References

 
WikiGenes - Universities