The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Subcellular structure of bovine thyroid gland. The localization of the peroxidase activity in bovine thyroid.

1. After differential pelleting of bovine thyroid tissue the highest relative specific activities for plasma membrane markers are found in the L fraction whereas those for peroxidase activities (p-phenylenediamine, guaiacol and 3,3'-diaminobenizidine tetrachloride peroxidases) are found in the M fraction. 2. When M + L fractions were subjected to buoyant-density equilibration in a HS zonal rotor all peroxidases show different profiles. The guaiacol peroxidase activity always follows the distribution of glucose 6-phosphatase. 3. When a Sb fraction is subjected to Sepharose 2B chromatography three major peaks are obtained. The first, eluted at the void volume, consists of membranous material and contains most of the guaiacol peroxidase activity. Most of the protein (probably thyroglobulin) is eluted with the second peak. Solubilized enzymes are recovered in the third peak. 4. p-Phenylenediamine peroxidase activity penetrates into the gel on polyacrylamidegel electrophoresis, whereas guaiacol peroxidase activity remains at the sample zone. 5. DEAE-Sephadex A-50 chromatography resolves the peroxidase activities into two peaks, displaying different relative amounts of the different enzymic activities in each peak. 6. The peroxidase activities may be due to the presence of different proteins. A localization of guaiacol peroxidase in rough-endoplasmic-reticulum membranes (or in membranes related to them) seems very likely.[1]

References

 
WikiGenes - Universities