The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Uracil-DNA glycosylase causes 5-bromodeoxyuridine photosensitization in Escherichia coli K-12.

An Escherichia coli uracil-DNA glycosylase-defective mutant (ung-1 thyA) was more resistant than its wild-type counterpart (ung+ thyA) to the killing effect of UV light when cultured in medium containing 5-bromouracil or 5-bromo-2'-deoxyuridine (BrdUrd). The phenotype of resistance to BrdUrd photosensitization and the uracil-DNA glycosylase deficiency appeared to be 100% cotransduced by P1 phage. During growth with BrdUrd, both strains exhibited similar growth rates and 5-bromouracil incorporation into DNA. The resistant phenotype of the ung-1 mutant was observed primarily during the stationary phase. In cells carrying 5-bromouracil-substituted DNA, mutations causing resistance to rifampin and valine were induced by UV irradiation at a higher frequency in the wild type than in the ung-1 mutant. This Ung-dependent UV mutagenesis required UmuC function. These results suggest that the action of the uracil-DNA glycosylase on UV-irradiated 5-bromouracil-substituted DNA produces lethal and mutagenic lesions. The BrdUrd photosensitization-resistant phenotype allowed us to develop a new, efficient method for enriching and screening ung mutants.[1]

References

 
WikiGenes - Universities