The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Bromuracil     5-bromo-1H-pyrimidine-2,4- dione

Synonyms: BROMOURACIL, PubChem23771, SureCN29805, CHEMBL144730, AG-C-06214, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of BROMOURACIL

 

High impact information on BROMOURACIL

  • To elucidate the mechanism of Fos-Jun interaction with the TRE we have performed UV cross-linking studies using oligonucleotides where thymines were replaced with bromouracil [6].
  • Despite recent experiments showing that BrdUrd-induced mutagenesis can be independent of the level of bromouracil (BrUra) substitution [Kaufman, E.R. & Davidson, R.L. (1978) Proc. Natl. Acad. Sci. USA 75, 4982-4986; Aebersold, P.M. (1976) Mutat. Res. 36, 357-362], BrUra.G base mispairs are a major determinant of mutagenesis [7].
  • Bromodeoxyuridine mutagenesis in mammalian cells: mutagenesis is independent of the amount of bromouracil in DNA [8].
  • One major difference is that 5-bromouracil-mediated photo-cross-linking experiments indicate that Mcm1 is in close proximity to functional groups in the major groove at the center of the recognition site whereas the SRF protein did not exhibit this characteristic [9].
  • Using a sensitive and specific mass spectrometric method, we detected two products of myeloperoxidase, 5-chlorouracil and 5-bromouracil, in neutrophil-rich human inflammatory tissue [10].
 

Chemical compound and disease context of BROMOURACIL

 

Biological context of BROMOURACIL

 

Anatomical context of BROMOURACIL

 

Associations of BROMOURACIL with other chemical compounds

  • In contrast, previous studies have demonstrated that 5-bromouracil could be generated by either eosinophil peroxidase or myeloperoxidase, which preferentially brominates uracil at plasma concentrations of halide and under moderately acidic conditions [10].
  • The insertion of bromouracil occurring in direct competition with cytosine deoxyribonucleotides opposite template guanine sites is 1.1 +/- 0.14% (mean +/- S.E.), and the misincorporation ratio, inc(B)/inc(C), is reduced 6-fold by the action of the proofreading exonuclease to 0.16 +/- 0.02% (mean +/- S.E.). A previous study by Trautner et al [24].
  • Further confirmation of this conclusion was obtained by substitution of 5-bromocytosine and 5-bromouracil at this base pair [25].
  • The method is based on the photolysis of bromouracil-containing DNA by 313 nm light and alkaline sucrose gradients [26].
  • In UAA sites, all three adenine:thymidine paris respond to 2AP mutagenesis in a similar pattern, In each position in the triplet, response to 2 AP is correlated with that to 5BU [27].
 

Gene context of BROMOURACIL

 

Analytical, diagnostic and therapeutic context of BROMOURACIL

  • The product was identified as 5-bromouracil by mass spectrometry, HPLC, and UV--visible spectroscopy [21].
  • Blood and plasma concentrations of FU and dFUR were analyzed by high-pressure liquid chromatography using 5-bromouracil as the internal standard [32].
  • Under varying growth conditions the percentage of thymine replacement by bromouracil in DNA, as determined by gas chromatography/mass spectrometry analysis, declined as cultures approached maximum density [33].
  • Electron transfer to 5-bromouracil (5-BrU) from nucleobase (N) electron adducts (and their protonated forms) has been studied by product analysis and pulse radiolysis [34].
  • Experiments with the centrifugation of non-sheared and sonicated 5-bromouracil and [3H]dAMP-labeled mitochondrial DNA (mtDNA) in alkaline CsCl density gradients provided evidence of a covalent linkage between newly-synthesized stretches and the parental DNA strands [35].

References

  1. Rate of replication of the murine immunoglobulin heavy-chain locus: evidence that the region is part of a single replicon. Brown, E.H., Iqbal, M.A., Stuart, S., Hatton, K.S., Valinsky, J., Schildkraut, C.L. Mol. Cell. Biol. (1987) [Pubmed]
  2. The effects of substituted pyrimidines in DNAs on cleavage by sequence-specific endonucleases. Berkner, K.L., Folk, W.R. J. Biol. Chem. (1979) [Pubmed]
  3. DNA base sequence changes induced by bromouracil mutagenesis of lambda phage. Skopek, T.R., Hutchinson, F. J. Mol. Biol. (1982) [Pubmed]
  4. Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Krasin, F., Hutchinson, F. Biophys. J. (1978) [Pubmed]
  5. Suppression of melanoma cell tyrosinase activity and tumorigenicity after incorporation of bromouracil for one or two cell divisions. Wrathall, J.R., Newcomb, E.W., Balint, R., Zeitz, L., Silagi, S. J. Cell. Physiol. (1975) [Pubmed]
  6. Asymmetrical recognition of the palindromic AP1 binding site (TRE) by Fos protein complexes. Risse, G., Jooss, K., Neuberg, M., Brüller, H.J., Müller, R. EMBO J. (1989) [Pubmed]
  7. Deoxyribonucleotide pools, base pairing, and sequence configuration affecting bromodeoxyuridine- and 2-aminopurine-induced mutagenesis. Hopkins, R.L., Goodman, M.F. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  8. Bromodeoxyuridine mutagenesis in mammalian cells: mutagenesis is independent of the amount of bromouracil in DNA. Kaufman, E.R., Davidson, R.L. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  9. DNA-binding specificity of Mcm1: operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein. Acton, T.B., Zhong, H., Vershon, A.K. Mol. Cell. Biol. (1997) [Pubmed]
  10. Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. Henderson, J.P., Byun, J., Takeshita, J., Heinecke, J.W. J. Biol. Chem. (2003) [Pubmed]
  11. Site specificity and variability in the mutator and antimutator effects of phage T4 gene 43 mutants. Ronen, A., Halevy, C., Kass, N. Genetics (1978) [Pubmed]
  12. Identification of uracil as a major lesion in E. coli DNA following the incorporation of 5-bromouracil, and some of the accompanying effects. Szyszko, J., Pietrzykowska, I., Twardowski, T., Shugar, D. Mutat. Res. (1983) [Pubmed]
  13. Genetic evidence for the nature, and excision repair, of DNA lesions resulting from incorporation of 5-bromouracil. Krych, M., Pietrzykowska, I., Szyszko, J., Shugar, D. Mol. Gen. Genet. (1979) [Pubmed]
  14. Photochemical cross-linking of the cyclic adenosine 3',5' monophosphate receptor protein to Escherichia coli 5-bromouracil-substituted DNA. Role of the effectors. Katouzian-Safadi, M., Blazy, B., Charlier, M. Photochem. Photobiol. (1991) [Pubmed]
  15. Effects of p-fluorophenylalanine on the induction of mutations in bacteriophage T4. I. 5-Bromouracil mutagenesis. Johnston, A.W. Mutat. Res. (1975) [Pubmed]
  16. Ionization of bromouracil and fluorouracil stimulates base mispairing frequencies with guanine. Yu, H., Eritja, R., Bloom, L.B., Goodman, M.F. J. Biol. Chem. (1993) [Pubmed]
  17. Random segregation of sister chromatids in developing chick retinal cells demonstrated in vivo using the fluorescence plus Giemsa technique. Morris, V.B. Chromosoma (1977) [Pubmed]
  18. Uncoupling of the induction of mutations and sister-chromatid exchanges by the replication of 5-bromouracil-substituted DNA. Kaufman, E.R. Mutat. Res. (1987) [Pubmed]
  19. Involvement of DNA lesions and SOS functions in 5-bromouracil-induced mutagenesis. Pietrzykowska, I., Krych, M., Shugar, D. Mutat. Res. (1985) [Pubmed]
  20. Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Suzuki, T., Michishita, E., Ogino, H., Fujii, M., Ayusawa, D. Exp. Cell Res. (2002) [Pubmed]
  21. The eosinophil peroxidase-hydrogen peroxide-bromide system of human eosinophils generates 5-bromouracil, a mutagenic thymine analogue. Henderson, J.P., Byun, J., Mueller, D.M., Heinecke, J.W. Biochemistry (2001) [Pubmed]
  22. Detection of proteins binding to short RNA.DNA hybrids or short antisense oligonucleotides in Xenopus laevis oocytes and human macrophage cell extracts by photoaffinity radiolabeling. Revers, F., Cario, M., Cao, T.L., Cazenave, C. Antisense Nucleic Acid Drug Dev. (1999) [Pubmed]
  23. Elimination of mycoplasmas from cell cultures by a novel soft agar technique. Kotani, H., Butler, G., Heggan, D., McGarrity, G.J. In Vitro Cell. Dev. Biol. (1991) [Pubmed]
  24. The biochemical basis of 5-bromouracil-induced mutagenesis. Heteroduplex base mispairs involving bromouracil in G x C----A x T and A x T----G x C mutational pathways. Lasken, R.S., Goodman, M.F. J. Biol. Chem. (1984) [Pubmed]
  25. Studies on gene control regions XII. The functional significance of a lac operator constitutive mutation. Fisher, E.F., Caruthers, M.H. Nucleic Acids Res. (1979) [Pubmed]
  26. Rate of DNA chain elongation in ultraviolet light-irradiated mammalian cells as estimated by a bromodeoxyuridine photolysis method. Povirk, L.F., Painter, R.B. Biophys. J. (1976) [Pubmed]
  27. Mutagen specificity and position effects on mutation in T4rII nonsense sites. Ronen, A., Rahat, A. Mutat. Res. (1976) [Pubmed]
  28. Discrimination between bromouracil and thymine for uptake into DNA in drm- and dra- mutants of Escherichia coli K12. Ryderg, B. Biochim. Biophys. Acta (1977) [Pubmed]
  29. Enhanced pyrimidine dimer removal in repair-proficient murine fibroblasts transformed with the denV gene of bacteriophage T4. Kusewitt, D.F., Ley, R.D., Henderson, E.E. Mutat. Res. (1991) [Pubmed]
  30. Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Rydberg, B. Mutat. Res. (1978) [Pubmed]
  31. Mutagenesis of lambda phage: 5-bromouracil and hydroxylamine. Hutchinson, F., Stein, J. Mol. Gen. Genet. (1977) [Pubmed]
  32. Pharmacokinetic studies of 5-fluorouracil and 5'-deoxy-5-fluorouridine in rats. Au, J.L., Walker, J.S., Rustum, Y. J. Pharmacol. Exp. Ther. (1983) [Pubmed]
  33. Sensitization of 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin cytotoxicity by 5-bromo-2'-deoxyuridine in human glioma. Mancini, W.R., Glaze, E.R., Stetson, P.L., Greenberg, H.S. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  34. Electron transfer from nucleobase electron adducts to 5-bromouracil. Is guanine an ultimate sink for the electron in irradiated DNA? Nese, C., Yuan, Z., Schuchmann, M.N., Von Sonntag, C. Int. J. Radiat. Biol. (1992) [Pubmed]
  35. Repair of lesions induced by bruneomycin in DNA of isolated mitochondria from the mature eggs of the teleost fish Misgurnus fossilis. Mikhailov, V.S., Gause, G.G. Biochim. Biophys. Acta (1978) [Pubmed]
 
WikiGenes - Universities