The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Covalent binding of oxidative biotransformation intermediates is associated with halothane hepatotoxicity in guinea pigs.

In vivo covalent binding of halothane biotransformation-reactive intermediates to hepatic protein and lipid was examined in association with the subsequent development of hepatic necrosis in the guinea pig. Oxidative halothane biotransformation was inhibited by the use of deuterated halothane, whereas reductive metabolism was enhanced by low inspired oxygen concentrations. Male outbred Hartley guinea pigs (n = 8) were exposed to either 1% (v/v) halothane or deuterated halothane--with a fractional inspired O2 concentration (FIO2) of 0.40 or 0.10--for 4 h. Livers removed from half of the animals immediately after anesthesia were evaluated for organic fluorine bound to protein and lipid. The remaining animals were evaluated for a hepatotoxic response up to 96 h after exposure. Only guinea pigs that received 1% halothane at an FIO2 of 0.40 had centrilobular necrosis develop with significantly increased plasma alanine aminotransferase activities. All other treatment conditions significantly reduced oxidative halothane biotransformation, as indicated by decreased plasma trifluoroacetic acid concentrations. These reductions were associated with a significant decrease in organic fluorine bound to hepatic proteins. An FIO2 of 0.10 during halothane anesthesia significantly enhanced reductive biotransformation, as indicated by plasma fluoride ion concentrations. This was associated with a significant increase in organic fluoride bound to hepatic lipids. Centrilobular necrosis did not develop under these conditions. Thus, covalent binding to subcellular proteins by the trifluoroacetyl acid chloride intermediate generated by oxidative halothane biotransformation is implicated as a mechanism of centrilobular necrosis in guinea pigs. Binding to lipids by reductive pathway generated free radicals does not appear to be involved in production of the lesion.[1]


WikiGenes - Universities