The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens.

The synthesis of periplasmic beta(1-2)glucan is required for crown gall tumor formation by Agrobacterium tumefaciens and for effective nodulation of alfalfa by Rhizobium meliloti. The exoC (pscA) gene is required for this synthesis by both bacteria as well as for the synthesis of capsular polysaccharide and normal lipopolysaccharide. We tested the possibility that the pleiotropic ExoC phenotype is due to a defect in the synthesis of an intermediate common to several polysaccharide biosynthetic pathways. Cytoplasmic extracts from wild-type A. tumefaciens and from exoC mutants of A. tumefaciens containing a cloned wild-type exoC gene synthesized in vitro UDP-glucose from glucose, glucose 1-phosphate, and glucose 6-phosphate. Extracts from exoC mutants synthesized UDP-glucose from glucose 1-phosphate but not from glucose or glucose 6-phosphate. Membranes from exoC mutant cells synthesized beta(1-2)glucan in vitro when exogenous UDP-glucose was added and contained the 235-kilodalton protein, which has been shown to carry out this synthesis in wild-type cells. We conclude that the inability of exoC mutants to synthesize beta(1-2)glucan is due to a deficiency in the activity of the enzyme phosphoglucomutase (EC, which in wild-type bacteria converts glucose 6-phosphate to glucose 1-phosphate, an intermediate in the synthesis of UDP-glucose. This interpretation can account for all of the deficiencies in polysaccharide synthesis which have been observed in these mutants.[1]


  1. Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. Uttaro, A.D., Cangelosi, G.A., Geremia, R.A., Nester, E.W., Ugalde, R.A. J. Bacteriol. (1990) [Pubmed]
WikiGenes - Universities