The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Plant Tumors

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Plant Tumors

 

High impact information on Plant Tumors

 

Chemical compound and disease context of Plant Tumors

 

Biological context of Plant Tumors

 

Anatomical context of Plant Tumors

 

Associations of Plant Tumors with chemical compounds

  • The observed variation in the organization of T-DNA in octopine crown gall tissue did not appear to be a characteristic of the way the tissue was derived [19].
  • Genetic analysis of T-DNA transcripts in nopaline crown galls [5].
  • Transient expression of a T-DNA-encoded beta-glucuronidase gusA gene is efficient, but the ecotype is deficient in crown gall tumorigenesis, transformation to kanamycin resistance, and stable GUS expression [24].
  • The presence of pyronopaline in crown gall tumor tissue and the catabolism of it by the bacterium A. tumefaciens establish it as a new opine [25].
  • The Mr 18.000 protein represented a fusion product between chloramphenicol acetyltransferase (CAT) on pACYC184 and a part of lysopine dehydrogenase (LpDH), the enzyme synthesizing octopine and lysopine in plant tumor cells [26].
 

Gene context of Plant Tumors

References

  1. The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Wang, L., Helmann, J.D., Winans, S.C. Cell (1992) [Pubmed]
  2. Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Willmitzer, L., Dhaese, P., Schreier, P.H., Schmalenbach, W., Van Montagu, M., Schell, J. Cell (1983) [Pubmed]
  3. In vivo transfer of the ti-plasmid of Agrobacterium tumefaciens to Escherichia coli. Holsters, M., Silva, B., Van Vliet, F., Hernalsteens, J.P., Genetello, C., Van Montagu, M., Schell, J. Mol. Gen. Genet. (1978) [Pubmed]
  4. Polyamine changes during senescence and tumorogenesis in plants. Srivastava, B.I. Mech. Ageing Dev. (1987) [Pubmed]
  5. Genetic analysis of T-DNA transcripts in nopaline crown galls. Joos, H., Inzé, D., Caplan, A., Sormann, M., Van Montagu, M., Schell, J. Cell (1983) [Pubmed]
  6. Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Thomashow, M.F., Hugly, S., Buchholz, W.G., Thomashow, L.S. Science (1986) [Pubmed]
  7. The crown-gall potato disk bioassay as a primary screen for compounds with antitumor activity. Galsky, A.G., Kozimor, R., Piotrowski, D., Powell, R.G. J. Natl. Cancer Inst. (1981) [Pubmed]
  8. A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. Stachel, S.E., An, G., Flores, C., Nester, E.W. EMBO J. (1985) [Pubmed]
  9. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Schwalm, K., Aloni, R., Langhans, M., Heller, W., Stich, S., Ullrich, C.I. Planta (2003) [Pubmed]
  10. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors. Kim, K.S., Chilton, W.S., Farrand, S.K. J. Bacteriol. (1996) [Pubmed]
  11. A novel glycine-rich/hydrophobic 16 kDa polypeptide gene from tobacco: similarity to proline-rich protein genes and its wound-inducible and developmentally regulated expression. Yasuda, E., Ebinuma, H., Wabiko, H. Plant Mol. Biol. (1997) [Pubmed]
  12. New class of limited-host-range Agrobacterium mega-tumor-inducing plasmids lacking homology to the transferred DNA of a wide-host-range, tumor-inducing plasmid. Unger, L., Ziegler, S.F., Huffman, G.A., Knauf, V.C., Peet, R., Moore, L.W., Gordon, M.P., Nester, E.W. J. Bacteriol. (1985) [Pubmed]
  13. Deletion derivatives of pAgK84 and their use in the analysis of Agrobacterium plasmid functions. Farrand, S.K., Wang, C.L., Hong, S.B., O'Morchoe, S.B., Slota, J.E. Plasmid (1992) [Pubmed]
  14. The opine synthase genes carried by Ti plasmids contain all signals necessary for expression in plants. Koncz, C., De Greve, H., André, D., Deboeck, F., Van Montagu, M., Schell, J. EMBO J. (1983) [Pubmed]
  15. Cloning, expression, sequence analysis, and site-directed mutagenesis of the Tn5306-encoded N5-(carboxyethyl)ornithine synthase from Lactococcus lactis K1. Donkersloot, J.A., Thompson, J. J. Biol. Chem. (1995) [Pubmed]
  16. Mannopinic acid and agropinic acid catabolism region of the octopine-type Ti plasmid pTi15955. Lyi, S.M., Jafri, S., Winans, S.C. Mol. Microbiol. (1999) [Pubmed]
  17. Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Lee, H., Humann, J.L., Pitrak, J.S., Cuperus, J.T., Parks, T.D., Whistler, C.A., Mok, M.C., Ream, L.W. Plant Physiol. (2003) [Pubmed]
  18. Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Amasino, R.M., Powell, A.L., Gordon, M.P. Mol. Gen. Genet. (1984) [Pubmed]
  19. T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Ooms, G., Bakker, A., Molendijk, L., Wullems, G.J., Gordon, M.P., Nester, E.W., Schilperoort, R.A. Cell (1982) [Pubmed]
  20. A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and alpha-actin in plant tumors. Koncz, C., Kreuzaler, F., Kalman, Z., Schell, J. EMBO J. (1984) [Pubmed]
  21. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. Cangelosi, G.A., Martinetti, G., Nester, E.W. J. Bacteriol. (1990) [Pubmed]
  22. Expression of Agrobacterium tumefaciens T-DNA gene 7 in Xenopus laevis oocytes. McPherson, J.C., Kingsbury, R. Biochem. Biophys. Res. Commun. (1986) [Pubmed]
  23. Suspension culture of Catharanthus roseus crown gall cell induced by Agrobacterium C58. Wang, N., Wang, S., Tian, J., Li, X., Zhu, L. Chin. J. Biotechnol. (1994) [Pubmed]
  24. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Nam, J., Matthysse, A.G., Gelvin, S.B. Plant Cell (1997) [Pubmed]
  25. A new opine derived from nopaline. Hall, L.M., Schrimsher, J.L., Taylor, K.B. J. Biol. Chem. (1983) [Pubmed]
  26. Expression of plant tumor-specific proteins in minicells of Escherichia coli: a fusion protein of lysopine dehydrogenase with chloramphenicol acetyltransferase. Schröder, J., Hillebrand, A., Klipp, W., Pühler, A. Nucleic Acids Res. (1981) [Pubmed]
  27. Escherichia coli lacZ gene as a biochemical and histochemical marker in plant cells. Matsumoto, S., Takebe, I., Machida, Y. Gene (1988) [Pubmed]
  28. Molecular characterization of the virulence gene virG of pTiKU 12. Lee, S.H., Sim, W.S. Mol. Cells (1998) [Pubmed]
  29. Purification and characterization of the crown gall specific enzyme nopaline synthase. Kemp, J.D., Sutton, D.W., Hack, E. Biochemistry (1979) [Pubmed]
  30. High molecular weight deoxyribonucleic acid polymerase from crown gall tumor cells of periwinkle (Vinca rosea). Gardner, J.M., Kado, C.I. Biochemistry (1976) [Pubmed]
 
WikiGenes - Universities