The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Coordinate control by vitamin A of keratin gene expression in human keratinocytes.

In the present study, we examine the effects of vitamin A on keratin protein and mRNA levels in human keratinocytes. In epidermal keratinocytes, the levels of keratins 5, 6, 14, and 17 decrease and keratins 13 and 19 increase in response to increasing concentrations of a potent synthetic trans-retinoic acid analog, arotinoid Ro 13-6298. In tracheal keratinocytes, a similar suppression is observed for keratins 5, 6, 14, 17, and 18 and an increase in keratin 19. Both induction and suppression responses show identical kinetics and both processes are half-maximal at 5 nM arotinoid and maximal at 10 nM. Utilizing cDNAs specific for keratins 5, 6, 13, and 19, we demonstrate that the mRNA levels for these keratins change coordinately with the corresponding amount of keratin protein, indicating that the control of keratin protein expression most likely resides at the level of mRNA synthesis and/or degradation. The identical kinetics for all of the responses, both inductive and suppressive, suggests that a common mechanism controls the expression of these genes. These results indicate that vitamin A produces more sweeping changes in keratinocyte function than previously appreciated in that many and perhaps all keratins are modulated by vitamin A. Moreover, these responses are 10- to 100-fold less sensitive to retinoid than the process of envelope formation, suggesting that at least two sets of processes with different sensitivities to vitamin A are present in keratinocytes.[1]

References

 
WikiGenes - Universities