The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

KRT19  -  keratin 19, type I

Homo sapiens

Synonyms: CK-19, CK19, Cytokeratin-19, K19, K1CS, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of KRT19

 

High impact information on KRT19

  • Analysis of reaction products by reverse phase high performance liquid chromatography and gas phase sequencing demonstrated the exclusive myristyl acylation of K19 and K20, consistent with the presence in monocytes of a specific lysyl N-epsilon-NH2-myristyl transferase activity [4].
  • Proliferating cells expressed BEC-specific markers (HEA125 and CK-19), but were negative for desmin and factor VIII-related antigen [5].
  • Malignant cholangiocytes in the tumors were strongly immunoreactive for biliary cytokeratin 19, p185neu, and cyclooxygenase-2 [6].
  • Occasionally c-kit- (but not CD34-) positive cells that coexpressed CK-19 were observed integrated into bile ducts [7].
  • 15 of these 16 patients with evidence of micrometastases had the highest cytokeratin 19 transcription level in a first lymph-node drainage station (three obturator, six internal, and six external iliac node) [8].
 

Chemical compound and disease context of KRT19

 

Biological context of KRT19

  • Characterization of the major physiologic phosphorylation site of human keratin 19 and its role in filament organization [14].
  • CONCLUSIONS: Although the expression of K15 and K19 differ in humans and mice, specific staining patterns can be used to characterize the epithelial phenotype in normal and diseased ocular surface [15].
  • The type I keratin 19 is unusual in its tissue distribution in that under normal circumstances it does not seem to be restricted, as the other keratins are, to expression in either stratified or simple epithelia [16].
  • Apoptosis is associated with caspase-mediated proteolysis of Type I (K18 and K19) cytokeratins [17].
  • This report provides a detailed description of the relationship between keratin expression and cell proliferation in the prostate and indicates that K19-positive cells form the link between the basal and luminal layers of the epithelium [18].
 

Anatomical context of KRT19

 

Associations of KRT19 with chemical compounds

 

Physical interactions of KRT19

  • TS 8 was mainly reactive with cytokeratin 19 and showed weak binding to cytokeratin 8 and 14 [27].
  • Here, we show that human RNA polymerase II subunit 11 specifically binds keratin 19, a component of the intermediate filament protein family, which is expressed in a tissue and differentiation-specific manner [28].
  • The results were compared with the expression of both markers in cells adhering from suspension prepared from the interfollicular epidermis without keratin-19-positive cells and with nuclear binding sites for galectin-1 [29].
 

Co-localisations of KRT19

 

Regulatory relationships of KRT19

 

Other interactions of KRT19

 

Analytical, diagnostic and therapeutic context of KRT19

References

  1. Quantitative RT-PCR in cirrhotic nodules reveals gene expression changes associated with liver carcinogenesis. Colombat, M., Paradis, V., Bièche, I., Dargère, D., Laurendeau, I., Belghiti, J., Vidaud, M., Degott, C., Bedossa, P. J. Pathol. (2003) [Pubmed]
  2. Altered expression of keratin and vimentin in human retinal pigment epithelial cells in vivo and in vitro. Hunt, R.C., Davis, A.A. J. Cell. Physiol. (1990) [Pubmed]
  3. Expression of keratin 19 distinguishes papillary thyroid carcinoma from follicular carcinomas and follicular thyroid adenoma. Schelfhout, L.J., Van Muijen, G.N., Fleuren, G.J. Am. J. Clin. Pathol. (1989) [Pubmed]
  4. Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. Stevenson, F.T., Bursten, S.L., Locksley, R.M., Lovett, D.H. J. Exp. Med. (1992) [Pubmed]
  5. Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. Joplin, R., Hishida, T., Tsubouchi, H., Daikuhara, Y., Ayres, R., Neuberger, J.M., Strain, A.J. J. Clin. Invest. (1992) [Pubmed]
  6. erbB-2/neu transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. Lai, G.H., Zhang, Z., Shen, X.N., Ward, D.J., Dewitt, J.L., Holt, S.E., Rozich, R.A., Hixson, D.C., Sirica, A.E. Gastroenterology (2005) [Pubmed]
  7. Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Crosby, H.A., Kelly, D.A., Strain, A.J. Gastroenterology (2001) [Pubmed]
  8. Molecular quantification and mapping of lymph-node micrometastases in cervical cancer. Van Trappen, P.O., Gyselman, V.G., Lowe, D.G., Ryan, A., Oram, D.H., Bosze, P., Weekes, A.R., Shepherd, J.H., Dorudi, S., Bustin, S.A., Jacobs, I.J. Lancet (2001) [Pubmed]
  9. Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Uenishi, T., Kubo, S., Yamamoto, T., Shuto, T., Ogawa, M., Tanaka, H., Tanaka, S., Kaneda, K., Hirohashi, K. Cancer Sci. (2003) [Pubmed]
  10. Immunohistochemistry with keratin, vimentin, desmin, and alpha-smooth muscle actin monoclonal antibodies in canine mammary gland: malignant mammary tumours. Vos, J.H., van den Ingh, T.S., Misdorp, W., Molenbeek, R.F., van Mil, F.N., Rutteman, G.R., Ivanyi, D., Ramaekers, F.C. The Veterinary quarterly. (1993) [Pubmed]
  11. Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Hu, L., Crowe, D.L., Rheinwald, J.G., Chambon, P., Gudas, L.J. Cancer Res. (1991) [Pubmed]
  12. Selective cell culture of primary breast carcinoma. Dairkee, S.H., Deng, G., Stampfer, M.R., Waldman, F.M., Smith, H.S. Cancer Res. (1995) [Pubmed]
  13. Patterns of keratin 19 expression in normal, metaplastic, condylomatous, atrophic, dysplastic, and malignant cervical squamous epithelium. Mittal, K.R., Demopoulos, R.I., Goswami, S. Am. J. Clin. Pathol. (1992) [Pubmed]
  14. Characterization of the major physiologic phosphorylation site of human keratin 19 and its role in filament organization. Zhou, X., Liao, J., Hu, L., Feng, L., Omary, M.B. J. Biol. Chem. (1999) [Pubmed]
  15. Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Yoshida, S., Shimmura, S., Kawakita, T., Miyashita, H., Den, S., Shimazaki, J., Tsubota, K. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  16. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. Stasiak, P.C., Purkis, P.E., Leigh, I.M., Lane, E.B. J. Invest. Dermatol. (1989) [Pubmed]
  17. Quantitative measurement of soluble cytokeratin fragments in tissue cytosol of 599 node negative breast cancer patients: a prognostic marker possibly associated with apoptosis. Gion, M., Boracchi, P., Dittadi, R., Biganzoli, E., Peloso, L., Gatti, C., Paccagnella, A., Rosabian, A., Vinante, O., Meo, S. Breast Cancer Res. Treat. (2000) [Pubmed]
  18. Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. Hudson, D.L., Guy, A.T., Fry, P., O'Hare, M.J., Watt, F.M., Masters, J.R. J. Histochem. Cytochem. (2001) [Pubmed]
  19. Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Stone, M.R., O'Neill, A., Catino, D., Bloch, R.J. Mol. Biol. Cell (2005) [Pubmed]
  20. Isolation and characterization of a stem cell population from adult human liver. Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B., Camussi, G. Stem Cells (2006) [Pubmed]
  21. Laminin induces the expression of cytokeratin 19 in hepatocellular carcinoma cells growing in culture. Su, Q., Fu, Y., Liu, Y.F., Zhang, W., Liu, J., Wang, C.M. World J. Gastroenterol. (2003) [Pubmed]
  22. Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway. Feng, L., Zhou, X., Liao, J., Omary, M.B. J. Cell. Sci. (1999) [Pubmed]
  23. Distinctive molecular composition of human gingival interdental papilla. Csiszar, A., Wiebe, C., Larjava, H., Häkkinen, L. J. Periodontol. (2007) [Pubmed]
  24. Upregulation of cytokeratins 8 and 18 in human breast cancer T47D cells is retinoid-specific and retinoic acid receptor-dependent. Jing, Y., Zhang, J., Waxman, S., Mira-y-Lopez, R. Differentiation (1996) [Pubmed]
  25. Cloning of cDNAs specifying vitamin A-responsive human keratins. Eckert, R.L., Green, H. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  26. Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. Bostick, P.J., Chatterjee, S., Chi, D.D., Huynh, K.T., Giuliano, A.E., Cote, R., Hoon, D.S. J. Clin. Oncol. (1998) [Pubmed]
  27. Diversity in immunoreactivity of tumor-derived cytokeratin monoclonal antibodies. Sundström, B.E., Nathrath, W.B., Stigbrand, T.I. J. Histochem. Cytochem. (1989) [Pubmed]
  28. The RNA polymerase II core subunit 11 interacts with keratin 19, a component of the intermediate filament proteins. Bruno, T., Corbi, N., Di Padova, M., De Angelis, R., Floridi, A., Passananti, C., Fanciulli, M. FEBS Lett. (1999) [Pubmed]
  29. Transient expression of keratin 19 is induced in originally negative interfollicular epidermal cells by adhesion of suspended cells. Dvoránková, B., Smetana, K., Chovanec, M., Lacina, L., Stork, J., Plzáková, Z., Galovicová, M., Gabius, H.J. Int. J. Mol. Med. (2005) [Pubmed]
  30. Stem cell factor/c-Kit interactions regulate human islet-epithelial cluster proliferation and differentiation. Li, J., Goodyer, C.G., Fellows, F., Wang, R. Int. J. Biochem. Cell Biol. (2006) [Pubmed]
  31. Differential expression of cytokeratin mRNA and protein in normal prostate, prostatic intraepithelial neoplasia, and invasive carcinoma. Yang, Y., Hao, J., Liu, X., Dalkin, B., Nagle, R.B. Am. J. Pathol. (1997) [Pubmed]
  32. Increased expression of cytokeratins 14, 18 and 19 correlates with tumor progression in the uterine cervix. Nair, S.A., Nair, M.B., Jayaprakash, P.G., Rajalekshmy, T.N., Nair, M.K., Pillai, M.R. Pathobiology (1997) [Pubmed]
  33. The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Grozdanov, P.N., Yovchev, M.I., Dabeva, M.D. Lab. Invest. (2006) [Pubmed]
  34. Biological effects and metabolism of 9-cis-retinoic acid and its metabolite 9,13-di-cis-retinoic acid in HaCaT keratinocytes in vitro: comparison with all-trans-retinoic acid. Chen, W.C., Sass, J.O., Seltmann, H., Nau, H., Orfanos, C.E., Zouboulis, C.C. Arch. Dermatol. Res. (2000) [Pubmed]
  35. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Prasad, M.L., Pellegata, N.S., Huang, Y., Nagaraja, H.N., de la Chapelle, A., Kloos, R.T. Mod. Pathol. (2005) [Pubmed]
  36. Retinoids strongly and selectively correlate with keratin 13 and not keratin 19 expression in cutaneous warts of renal transplant recipients. Blokx, W.A., Smit, J.V., de Jong, E.M., Link, M.M., van de Kerkhof, P.C., Ruiter, D.J. Archives of dermatology. (2002) [Pubmed]
  37. Serum cytokeratins in alcoholic liver disease: contrasting levels of cytokeratin-18 and cytokeratin-19. Gonzalez-Quintela, A., García, J., Campos, J., Perez, L.F., Alende, M.R., Otero, E., Abdulkader, I., Tomé, S. Alcohol (2006) [Pubmed]
  38. Epitope specificity of 30 monoclonal antibodies against cytokeratin antigens: the ISOBM TD5-1 Workshop. Stigbrand, T., Andrés, C., Bellanger, L., Bishr Omary, M., Bodenmüller, H., Bonfrer, H., Brundell, J., Einarsson, R., Erlandsson, A., Johansson, A., Leca, J.F., Levi, M., Meier, T., Nap, M., Nustad, K., Seguin, P., Sjödin, A., Sundström, B., van Dalen, A., Wiebelhaus, E., Wiklund, B., Arlestig, L., Hilgers, J. Tumour Biol. (1998) [Pubmed]
  39. Immunohistochemical profiles of 30 monoclonal antibodies against cytokeratins 8, 18 and 19. Second report of the TD5 workshop. Nap, M., van Wel, T., Andrés, C., Bellanger, L., Bodenmüller, H., Bonfrer, H., Brundell, J., Einarsson, R., Erlandsson, A., Johansson, A., Leca, J.F., Meier, T., Seguin, P., Sjödin, A., Stigbrand, T., Sundström, B.E., van Dalen, A., Wiebelhaus, E., Wiklund, B., Hilgers, J. Tumour Biol. (2001) [Pubmed]
  40. Binding of recombinant human cytokeratin 19 to laminin: a possible role in interaction between intermediate filament derived from epithelial cells and extracellular matrixes. Dobashi, N., Fujita, J., Murota, M., Ohtsuki, Y., Bandoh, S., Ueda, Y., Dohmoto, K., Hojo, S., Nishioka, M., Ishida, T., Takahara, J. Cell Struct. Funct. (2000) [Pubmed]
 
WikiGenes - Universities