Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate.
The bacterium Pseudomonas PG2982 metabolizes glyphosate (N-(phosphonomethyl)glycine) by converting it to glycine, a one-carbon unit, and phosphate. Here we show that this conversion involves the intermediate formation of sarcosine. When cells are incubated with [14C]glyphosate, the 14C can be entrapped in glycine or sarcosine. With added sarcosine, 14C from all three carbons of glyphosate is recovered solely in sarcosine. In experiments with glycine, radioactivity from the carboxymethyl moiety of glyphosate is trapped in glycine as well as serine, whereas radioactivity from the phosphonomethyl carbon is only incorporated into serine. These results are consistent with a pathway involving the conversion of glyphosate to sarcosine by cleavage of its carbon-phosphorus (C-P) bond, followed by the oxidation of sarcosine to glycine and formaldehyde.[1]References
- Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. Kishore, G.M., Jacob, G.S. J. Biol. Chem. (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg