The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

sarcosine     2-methylaminoethanoic acid

Synonyms: Sarcosin, Cocobetaine, MeGly, Methylglycine, Polysarcosine, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of sarcosine


High impact information on sarcosine


Chemical compound and disease context of sarcosine


Biological context of sarcosine


Anatomical context of sarcosine

  • The fact that the folate binding proteins in rat liver mitochondria are two enzymes, dimethylglycine dehydrogenase and sarcosine dehydrogenase, suggests that enzyme activities may eventually be discovered for the other intracellular folate binding proteins [21].
  • Transfection of human fibroblast cell lines and CV-1 cells (monkey kidney epithelial cells) with the sox cDNA resulted in a peroxisomal localization of sarcosine oxidase and revealed that the import into the peroxisomes is mediated by the peroxisomal targeting signal 1 pathway [20].
  • We developed a new, highly sensitive enzymatic method for quantifying creatine in erythrocytes, which comprises creatine amidinohydrolase, sarcosine oxidase, and peroxidase [22].
  • The significant enhancement of binding-inhibition potency by N-terminal sarcosine substitution is attributable to higher affinity of the modified peptide for the angiotensin II receptor site, and is consistent with the increased activity of [Sar1]-angiotensin II upon smooth muscle and aldosterone production in vitro [23].
  • Modifications of the standard alkaline protocol included an increase to 2% of sodium sarcosinate in the lysis solution, a reduction in the glass-slide area for comet analysis, and a cutoff value for comet head diameter of at least 30 microm, to exclude contaminating leukocytes [24].

Associations of sarcosine with other chemical compounds


Gene context of sarcosine


Analytical, diagnostic and therapeutic context of sarcosine

  • Paper chromatography, column chromatography, and gas chromatography-mass spectrometry identified high levels of sarcosine in the urine of the mutant mice [34].
  • An enzyme electrode system for the determination of creatinine and creatine was developed by utilizing three enzymes: creatinine amidohydrolase (CA), creatine amidinohydrolase (Cl), and sarcosine oxidase (SO) [35].
  • After treatment with 1% sarcosine or 2% 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propanesulfonate (CHAPS) detergents, we observed frequent 30-50 nm annular particles, probably released from pathological aggregates due to the dissociation of filaments by the detergents [36].
  • We have carried out a differential scanning calorimetry study into the pH effect on the thermal denaturation of ribonuclease A at several concentrations of the osmolyte sarcosine [37].
  • Resonances corresponding to administered L-[methyl-2H3]methionine, and to the transmethylation product sarcosine, are observed during the first 10-min period after an intravenous injection of the labeled methionine, and the time dependence has been followed for a period of 5 h [38].


  1. Heterotetrameric sarcosine oxidase: structure of a diflavin metalloenzyme at 1.85 A resolution. Chen, Z.W., Hassan-Abdulah, A., Zhao, G., Jorns, M.S., Mathews, F.S. J. Mol. Biol. (2006) [Pubmed]
  2. Bacterial sarcosine oxidase: comparison of two multisubunit enzymes containing both covalent and noncovalent flavin. Kvalnes-Krick, K., Jorns, M.S. Biochemistry (1986) [Pubmed]
  3. Kinetic studies of the mechanism of carbon-hydrogen bond breakage by the heterotetrameric sarcosine oxidase of Arthrobacter sp. 1-IN. Harris, R.J., Meskys, R., Sutcliffe, M.J., Scrutton, N.S. Biochemistry (2000) [Pubmed]
  4. pH and kinetic isotope effects on sarcosine oxidation by N-methyltryptophan oxidase. Ralph, E.C., Fitzpatrick, P.F. Biochemistry (2005) [Pubmed]
  5. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. Baik, S.C., Kim, K.M., Song, S.M., Kim, D.S., Jun, J.S., Lee, S.G., Song, J.Y., Park, J.U., Kang, H.L., Lee, W.K., Cho, M.J., Youn, H.S., Ko, G.H., Rhee, K.H. J. Bacteriol. (2004) [Pubmed]
  6. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Gomeza, J., Hülsmann, S., Ohno, K., Eulenburg, V., Szöke, K., Richter, D., Betz, H. Neuron (2003) [Pubmed]
  7. Physicochemical and physiological properties of cholylsarcosine. A potential replacement detergent for bile acid deficiency states in the small intestine. Lillienau, J., Schteingart, C.D., Hofmann, A.F. J. Clin. Invest. (1992) [Pubmed]
  8. Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. Binzak, B.A., Wevers, R.A., Moolenaar, S.H., Lee, Y.M., Hwu, W.L., Poggi-Bach, J., Engelke, U.F., Hoard, H.M., Vockley, J.G., Vockley, J. Am. J. Hum. Genet. (2001) [Pubmed]
  9. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Guastella, J., Brecha, N., Weigmann, C., Lester, H.A., Davidson, N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  10. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. Takanaga, H., Mackenzie, B., Suzuki, Y., Hediger, M.A. J. Biol. Chem. (2005) [Pubmed]
  11. Simultaneous horizontal gene transfer of a gene coding for ribosomal protein l27 and operational genes in Arthrobacter sp. Garcia-Vallvé, S., Simó, F.X., Montero, M.A., Arola, L., Romeu, A. J. Mol. Evol. (2002) [Pubmed]
  12. Sarcosine oxidase contains a novel covalently bound FMN. Willie, A., Edmondson, D.E., Jorns, M.S. Biochemistry (1996) [Pubmed]
  13. Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. Meskys, R., Harris, R.J., Casaite, V., Basran, J., Scrutton, N.S. Eur. J. Biochem. (2001) [Pubmed]
  14. New derivatives of CNC-amino acids and -oligopeptides: experimental antitumor activity. Zeller, W.J. J. Cancer Res. Clin. Oncol. (1986) [Pubmed]
  15. Attenuation of 2-methoxyethanol-induced testicular toxicity in the rat by simple physiological compounds. Mebus, C.A., Welsch, F., Working, P.K. Toxicol. Appl. Pharmacol. (1989) [Pubmed]
  16. Extreme halophiles synthesize betaine from glycine by methylation. Nyyssola, A., Kerovuo, J., Kaukinen, P., von Weymarn, N., Reinikainen, T. J. Biol. Chem. (2000) [Pubmed]
  17. Sequence analysis of sarcosine oxidase and nearby genes reveals homologies with key enzymes of folate one-carbon metabolism. Chlumsky, L.J., Zhang, L., Jorns, M.S. J. Biol. Chem. (1995) [Pubmed]
  18. Glycine oxidase from Bacillus subtilis. Characterization of a new flavoprotein. Job, V., Marcone, G.L., Pilone, M.S., Pollegioni, L. J. Biol. Chem. (2002) [Pubmed]
  19. High affinity angiotensin II receptors in myocardial sarcolemmal membranes. Characterization of receptors and covalent linkage of 125I-angiotensin II to a membrane component of 116,000 daltons. Rogers, T.B. J. Biol. Chem. (1984) [Pubmed]
  20. Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase. Reuber, B.E., Karl, C., Reimann, S.A., Mihalik, S.J., Dodt, G. J. Biol. Chem. (1997) [Pubmed]
  21. Cellular folate binding proteins; function and significance. Wagner, C. Annu. Rev. Nutr. (1982) [Pubmed]
  22. Sensitive enzymatic assay for erythrocyte creatine with production of methylene blue. Okumiya, T., Jiao, Y., Saibara, T., Miike, A., Park, K., Kageoka, T., Sasaki, M. Clin. Chem. (1998) [Pubmed]
  23. Competitive binding activity of angiotensin II analogues in an adrenal cortex radioligand-receptor assay;. Saltman, S., Baukal, A., Waters, S., Bumpus, F.M., Catt, K.J. Endocrinology (1975) [Pubmed]
  24. Single-cell gel (comet) assay detects primary DNA damage in nonneoplastic urothelial cells of smokers and ex-smokers. Gontijo, A.M., Elias, F.N., Salvadori, D.M., de Oliveira, M.L., Correa, L.A., Goldberg, J., Trindade, J.C., de Camargo, J.L. Cancer Epidemiol. Biomarkers Prev. (2001) [Pubmed]
  25. Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states. Ratnaparkhi, G.S., Varadarajan, R. J. Biol. Chem. (2001) [Pubmed]
  26. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. Yeo, E.J., Briggs, W.T., Wagner, C. J. Biol. Chem. (1999) [Pubmed]
  27. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. Goyer, A., Johnson, T.L., Olsen, L.J., Collakova, E., Shachar-Hill, Y., Rhodes, D., Hanson, A.D. J. Biol. Chem. (2004) [Pubmed]
  28. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T., Takabe, T. J. Biol. Chem. (2003) [Pubmed]
  29. The amino acid residue at sequence position 5 in the conantokin peptides partially governs subunit-selective antagonism of recombinant N-methyl-D-aspartate receptors. Klein, R.C., Prorok, M., Galdzicki, Z., Castellino, F.J. J. Biol. Chem. (2001) [Pubmed]
  30. Characterization of the FAD-containing N-methyltryptophan oxidase from Escherichia coli. Khanna, P., Schuman Jorns, M. Biochemistry (2001) [Pubmed]
  31. A mammalian homolog of the bacterial monomeric sarcosine oxidases maps to mouse chromosome 11, close to Cryba1. Herbst, R., Barton, J.L., Nicklin, M.J. Genomics (1997) [Pubmed]
  32. Characterization of multiple forms of the human glycine transporter type-2. Gallagher, M.J., Burgess, L.H., Brunden, K.R. Brain Res. Mol. Brain Res. (1999) [Pubmed]
  33. Osmolyte effects on kinetics of FKBP12 C22A folding coupled with prolyl isomerization. Russo, A.T., Rösgen, J., Bolen, D.W. J. Mol. Biol. (2003) [Pubmed]
  34. sar: a genetic mouse model for human sarcosinemia generated by ethylnitrosourea mutagenesis. Harding, C.O., Williams, P., Pflanzer, D.M., Colwell, R.E., Lyne, P.W., Wolff, J.A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  35. Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum. Tsuchida, T., Yoda, K. Clin. Chem. (1983) [Pubmed]
  36. Annular alpha-synuclein species from purified multiple system atrophy inclusions. Pountney, D.L., Lowe, R., Quilty, M., Vickers, J.C., Voelcker, N.H., Gai, W.P. J. Neurochem. (2004) [Pubmed]
  37. An osmolyte effect on the heat capacity change for protein folding. Plaza del Pino, I.M., Sanchez-Ruiz, J.M. Biochemistry (1995) [Pubmed]
  38. Metabolism of excess methionine in the liver of intact rat: an in vivo 2H NMR study. London, R.E., Gabel, S.A., Funk, A. Biochemistry (1987) [Pubmed]
WikiGenes - Universities