The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The non-flavin redox center of the streptococcal NADH peroxidase. I. Thiol reactivity and redox behavior in the presence of urea.

Unlike the 2-electron-reduced (EH2) forms of the flavoprotein disulfide reductases and mercuric reductase, the native EH2 form of the streptococcal NADH peroxidase is quite refractile toward chemical modification with thiol-specific reagents. In the presence of 1.3 M urea, however, the single thiol of the reduced enzyme reacts with phenylmercuric acetate with a t1/2 of 3 min. This modification abolishes the charge-transfer absorbance band at 540 nm and inactivates the enzyme; the latter effect is shown to be reversed with dithiothreitol. Alkylation of the streptococcal peroxidase with iodo[1-14C]acetamide under reducing conditions in the presence of 8 M guanidine hydrochloride allows the isolation of a single labeled tryptic peptide with the sequence: Gly-Asp-Phe-Ile-Ser-Phe-Leu-Ser-C*ys-Gly-Met-Gln-Leu-Tyr-Leu- Glu-Gly-Lys. This sequence is identical to that previously reported (Poole, L. B., and Claiborne, A. (1988) Biochem. Biophys. Res. Commun. 153, 261-266) for the cysteinyl peptide isolated from the NADH peroxidase labeled metabolically with [35S]cysteine. Careful examination of the physical properties of the streptococcal peroxidase in the presence of 1.3 M urea shows that, while catalytic activity and native structural features are largely retained, the relative potentials of flavin and non-flavin redox centers are dramatically affected. We propose that low concentrations of urea stabilize an intermediate state in the transition between native and denatured forms, which is responsible for the observed changes in both active-site thiol reactivity and in redox properties.[1]

References

 
WikiGenes - Universities