The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity.

Seventeen clinical isolates of Staphylococcus aureus (from the United States and Europe) selected for low (borderline)-level methicillin resistance (MIC of methicillin, 2 to 4 micrograms/ml; MIC of oxacillin, 0.5 to 8 micrograms/ml) were examined for their mechanisms of resistance. Five strains were typical of heterogeneous S. aureus: they gave positive reactions with a DNA probe specific for mec and contained a small fraction (10(-6] of highly resistant cells (MIC, greater than 100 micrograms/ml). The rest of the 12 strains were homogeneous with respect to their methicillin resistance: the MIC of methicillin for all cells was 2 to 4 micrograms/ml, and no cells for which MICs were 50 micrograms/ml or higher were detectable (less than 10(-9]. None of these strains reacted with the mec-specific DNA probe. One representative strain of each group was characterized in more detail. Strain CDC-1, prototype of heterogeneous methicillin-resistant S. aureus, contained penicillin-binding protein ( PBP) 2a; its DNA could transform a methicillin-susceptible and novobiocin-resistant recipient to methicillin resistance with ca. 35% linkage to Novr. Introduction of the "factor X" determinant (K. Murakami and A. Tomasz, J. Bacteriol. 171:874-879, 1989) converted strain CDC-1 to high, homogeneous resistance. Strain CDC-6, prototype of the second group of isolates, showed completely homogeneous MICs of methicillin, oxacillin, and cefotaxime. The strain contained modified "normal" PBPs: PBPs 1 and 2 showed low drug reactivity (and/or cellular amounts), and PBP 4 was present in elevated amounts. No PBP 2a could be detected. DNA isolated from strain CDC-6 could transform the methicillin-susceptible and novobiocin-resistant strain to methicillin resistance in a multistep fashion, but this resistance showed no genetic linkage to the Nov marker. We suggest that staphylococci with borderline resistance may contain at least three different classes of mechanism: heterogeneous, methicillin-resistant S. aureus, PBPs of modified drug reactivities, and the previously reported hyperproduction of beta-lactamase (L.K. McDougal and C. Thornsberry, J. Clin Microbiol. 23:832-839, 1986).[1]

References

 
WikiGenes - Universities