The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Heterologous gene expression of the glyphosate resistance marker and its application in yeast transformation.

The E. coli aroA gene was inserted between yeast promoter and terminator sequences in different shuttle expression plasmids and found to confer enhanced EPSP synthase activity as well as resistance to glyphosate toxicity. Subsequently, a transformation system using these newly constructed vectors in yeast was characterized. The efficiency of the glyphosate resistance marker for transformation and selection with plasmid pHR6/20-1 in S. cerevisiae laboratory strain SHY2 was found to be relatively high when compared with selection for LEU2 prototrophy. The fate of the recombinant plasmid pHR6/20-1 in the transformants, the preservation of the aroA E. coli DNA fragment in yeast, mitotic stability, EPSP synthase activity, and growth on glyphosate-containing medium have been investigated. As this plasmid also allows direct selection for glyphosate resistant transformants on rich media, the glyphosate resistance marker was used for transforming both S. cerevisiae laboratory strain SHY2 and brewer's yeast strains S. cerevisiae var. "uvarum" BHS5 and BHS2. In all cases, the vector pHR6/20-1 was maintained as an autonomously replicating plasmid. The resistance marker is, therefore, suitable for transforming genetically unlabelled S. cerevisiae laboratory, wild, and industrial yeast strains.[1]


WikiGenes - Universities