The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II.

Complex II of the anaerobic respiratory chain in Ascaris muscle mitochondria showed a high fumarate reductase activity when reduced methyl viologen was used as the electron donor. The maximum activity was 49 mumol/min per mg protein, which is much higher than that of the mammalian counterpart. The mitochondria of Ascaris-fertilized eggs, which require oxygen for its development, also showed fumarate reductase activity with a specific activity intermediate between those of adult Ascaris and mammals. Antibody against the Ascaris flavoprotein subunit reacted with the mammalian counterparts, whereas those against the Ascaris iron-sulfur protein subunit did not crossreact, although the amino acid compositions of the subunits in Ascaris and bovine heart were quite similar. Cytochrome b-558 of Ascaris complex II was separated from flavoprotein and iron-sulphur protein subunits by high performance liquid chromatography with a gel permeation system in the presence of Sarkosyl. Isolated cytochrome b-558 is composed of two hydrophobic polypeptides with molecular masses of 17.2 and 12.5 kDa determined by gradient gel, which correspond to the two small subunits of complex II. Amino acid compositions of these small subunits showed little similarity with those of cytochrome b-560 of bovine heart complex II. NADH-fumarate reductase, which is the final enzyme complex in the anaerobic respiratory chain in Ascaris, was reconstituted with bovine heart complex I, Ascaris complex II and phospholipids. The maximum activity was 430 nmol/min per mg protein of complex II. Rhodoquinone was essential for this reconstitution, whereas ubiquinone showed no effect. The results clearly indicate the unique role of Ascaris complex II as fumarate reductase and the indispensability of rhodoquinone as the low-potential electron carrier in the NADH-fumarate reductase system.[1]

References

  1. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II. Kita, K., Takamiya, S., Furushima, R., Ma, Y.C., Suzuki, H., Ozawa, T., Oya, H. Biochim. Biophys. Acta (1988) [Pubmed]
 
WikiGenes - Universities