The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Rhodoquinone     2-amino-5-[ (2E,6E,10E,14E,18E,22E,26E,30E ...

Synonyms: SureCN932613, CPD-9613, AC1O5V25, 5591-74-2, rhodoquinone-10, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodoquinone

 

High impact information on Rhodoquinone

 

Chemical compound and disease context of Rhodoquinone

 

Anatomical context of Rhodoquinone

 

Associations of Rhodoquinone with other chemical compounds

  • This review will focus on some biochemical and evolutionary aspects of these fermentative mitochondria, with special attention to fumarate reductase, the synthesis of the rhodoquinone involved, and the enzymes involved in acetate production (acetate : succinate CoA-transferase and succinyl CoA-synthetase) [10].
  • Conceivably, the oxidation-reduction sites of ubiquinone-10, rhodoquinone and POC-170 partly, if not all, exist on the surface of chromatophore membrane or project outside the membrane, because of their accessibility to the polarographic electrode [8].
 

Gene context of Rhodoquinone

  • The results clearly indicate the unique role of Ascaris complex II as fumarate reductase and the indispensability of rhodoquinone as the low-potential electron carrier in the NADH-fumarate reductase system [11].

References

  1. Photooxidase system of Rhodospirillum rubrum III. The role of rhodoquinone and ubiquinone in the activity of preparations of chromatophores and photoreaction centers. Gimenez-Gallego, G., Ramírez-Ponce, M.P., Lauzurica, P., Ramírez, J.M. Eur. J. Biochem. (1982) [Pubmed]
  2. Isoprenoid quinones and fatty acids of Zoogloea. Hiraishi, A., Shin, Y.K., Sugiyama, J., Komagata, K. Antonie Van Leeuwenhoek (1992) [Pubmed]
  3. Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. Hoffmeister, M., van der Klei, A., Rotte, C., van Grinsven, K.W., van Hellemond, J.J., Henze, K., Tielens, A.G., Martin, W. J. Biol. Chem. (2004) [Pubmed]
  4. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. Van Hellemond, J.J., Klockiewicz, M., Gaasenbeek, C.P., Roos, M.H., Tielens, A.G. J. Biol. Chem. (1995) [Pubmed]
  5. Purification and characterization of electron-transfer flavoprotein: rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum. Ma, Y.C., Funk, M., Dunham, W.R., Komuniecki, R. J. Biol. Chem. (1993) [Pubmed]
  6. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system. Takamiya, S., Matsui, T., Taka, H., Murayama, K., Matsuda, M., Aoki, T. Arch. Biochem. Biophys. (1999) [Pubmed]
  7. Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction. Van Hellemond, J.J., Van Remoortere, A., Tielens, A.G. Parasitology (1997) [Pubmed]
  8. Polarographic studies on ubiquinone-10 and rhodoquinone bound with chromatophores from Rhodospirillum rubrum. Erabi, T., Higuti, T., Kakuno, T., Yamashita, J., Tanaka, M., Horio, T. J. Biochem. (1975) [Pubmed]
  9. Rhodoquinone requirement of the Hymenolepis diminuta mitochondrial electron transport system. Fioravanti, C.F., Kim, Y. Mol. Biochem. Parasitol. (1988) [Pubmed]
  10. Biochemical and evolutionary aspects of anaerobically functioning mitochondria. van Hellemond, J.J., van der Klei, A., van Weelden, S.W., Tielens, A.G. Philos. Trans. R. Soc. Lond., B, Biol. Sci. (2003) [Pubmed]
  11. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II. Kita, K., Takamiya, S., Furushima, R., Ma, Y.C., Suzuki, H., Ozawa, T., Oya, H. Biochim. Biophys. Acta (1988) [Pubmed]
 
WikiGenes - Universities