The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inactivation of yeast hexokinase by 2-aminothiophenol. Evidence for a 'half-of-the-sites' mechanism.

Yeast hexokinase is a homodimer consisting of two identical subunits. Yeast hexokinase was inactivated by 2-aminothiophenol at 25 degrees C (pH 9.1). The reaction followed pseudo-first-order kinetics until about 70% of the phosphotransferase activity was lost. About 0.65 mol of 2-aminothiophenol/mol of hexokinase was found to be bound after the 70% loss of the enzyme activity. Completely inactivated hexokinase showed a stoichiometry of about 1 mol of 2-aminothiophenol bound/mol of the enzyme. The evidence obtained from kinetic experiments, stoichiometry of the inactivation reaction and fluorescence emission measurements suggested site-site interaction (weak negative co-operativity) during the inactivation reaction. The approximate rate constants for the reversible binding of 2-aminothiophenol to the first subunit (KI) and for the rate of covalent bond formation with only one site occupied (k3) were 150 microM and 0.046 min-1 respectively. The inactivation reaction was pH-dependent. Dithiothreitol, 2-mercaptoethanol and cysteine restored the phosphotransferase activity of the hexokinase after inactivation by 2-aminothiophenol. Sugar substrates protected the enzyme from inactivation more than did the nucleotides. Thus it is concluded that the inactivation of the hexokinase by 2-aminothiophenol was a consequence of a covalent disulphide bond formation between the aminothiol and thiol function at or near the active site of the enzyme. Hexokinase that had been completely inactivated by 2-aminothiophenol reacted with o-phthalaldehyde. Fluorescence emission intensity of the incubation mixture containing 2-aminothiophenol-modified hexokinase and o-phthalaldehyde was one-half of that obtained from an incubation mixture containing hexokinase and o-phthalaldehyde under similar experimental conditions. The intensity and position of the fluorescence emission maximum of the 2-aminothiophenol-modified hexokinase were different from those of the native enzyme, indicating conformational change following modification. Whereas aliphatic aminothiols were completely ineffective, aromatic aminothiols were good inhibitors of the hexokinase. Cyclohexyl mercaptan weakly inhibited the enzyme. Inhibition of the hexokinase by heteroaromatic thiols was dependent on the nature of the heterocyclic ring and position of the thiol-thione equilibrium. The inhibitory function of a thiol is associated with the following structural characteristics: (a) the presence of an aromatic ring, (b) the presence of a free thiol function and (c) the presence of a free amino function in the close proximity of the thiol function.(ABSTRACT TRUNCATED AT 400 WORDS)[1]


WikiGenes - Universities