The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Changes in cell membrane fluidity affect the sodium transport across frog skin and its sensitivity to amiloride.

1. 1-5 mM n-hexanol added to the outer (mucosal) medium of isolated skin of the frog Rana temporaria increases the short circuit current (Isc) across it. 2. This effect shows a saturable dependency on the outer sodium concentration, also when NaCl is replaced by Na2SO4. 3. n-Hexanol at a concentration of 1 mM, and cold acclimation of the frogs, which increases the fluidity of epidermal cell membranes, do not affect the sensitivity of Isc to the inhibiting effect of amiloride. 4. n-Hexanol at a concentration (5 mM) which causes a fluidization of cell membrane preparations from isolated frog epidermis also increases the sensitivity of Isc to amiloride. 5. The effects of low concentrations of n-hexanol and of cold acclimation probably depend on an increase of the permeability of apical membranes of epidermal cells to sodium caused by membrane fluidization. At higher concentrations of n-hexanol, a further disordering of the membrane structure occurs with a better access of amiloride to its action sites.[1]

References

  1. Changes in cell membrane fluidity affect the sodium transport across frog skin and its sensitivity to amiloride. Lagerspetz, K.Y., Laine, A.M. Comparative biochemistry and physiology. A, Comparative physiology. (1987) [Pubmed]
 
WikiGenes - Universities