The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Purification and characterization of tyrosine aminotransferase activities from Anchusa officinalis cell cultures.

Three activities of tyrosine aminotransferase ( TAT; EC, the enzyme which catalyzes the first step of the tyrosine pathway leading to the formation of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyllactic acid), have been extensively purified from cell suspension cultures of Anchusa officinalis L. and subsequently characterized. TAT-1, TAT-2, and TAT-3 differ slightly in native molecular weights (180,000-220,000) and are composed of subunits (4 X 43,000 for TAT-1 and 4 X 56,000 for TAT-2). All three enzymes show a pronounced preference for L-tyrosine over other aromatic amino acids, but TAT-2 and TAT-3 can also effectively utilize L-aspartate or L-glutamate as a substrate. For amino acceptor cosubstrates, either oxaloacetate or alpha-ketoglutarate can be utilized equally well by TAT-1, while the former is the most effective alpha-keto acid for TAT-2 and the latter is the best for TAT-3. All the TAT activities display high pH optima (8.8-9.6), and are inhibited by the tyrosine metabolite 3,4-dihydroxyphenyllactate. TAT-2 and TAT-3 are also inhibited by rosmarinic acid.[1]


WikiGenes - Universities