The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The expression of human glycerol-3-phosphate dehydrogenase in human/rodent somatic-cell hybrids.

Our previous studies using rodent/human somatic-cell hybrids suggested that the expression of human mitochondrial glycerol-3-phosphate dehydrogenase (GPDM) is dependent on the presence of human mitochondria. This has now been tested directly by analysis of GPDM activity in a series of nine hybrid-cell lines, four segregating human chromosomes and five losing rodent chromosomes (reverse segregants). The chromosome composition of the hybrids was deduced from analysis of biochemical markers and examination of G- and G11-banded metaphase spreads and the mitochondrial content was determined by Southern blot analysis, using cloned mouse and human mtDNA sequences as probes. We found that the mtDNA species present in these hybrids correlated exactly with the pattern of chromosome segregation such that the conventional hybrids contained rodent mtDNA and the reverse segregants human mtDNA. However, the pattern of GPDM expression was not directly correlated with the species of chromosomes or mitochondria present: all the hybrids showed strong rodent GPDM activity and two from each class of hybrid also showed human GPDM activity but the other hybrids were negative for human GPDM. We conclude that rodent GPDM readily integrates into human mitochondria, that the expression of rodent GPDM is not dependent on the presence of rodent mitochondria, and that GPDM is not coded by mtDNA. Human GPDM either is not capable of being inserted into the rodent mitochondrial membrane or is regulated in some way in the hybrid cells by an unidentified rodent factor.[1]


  1. The expression of human glycerol-3-phosphate dehydrogenase in human/rodent somatic-cell hybrids. Edwards, Y., McMillan, S.L., Kielty, C., Shaw, M.A. Biochem. Genet. (1985) [Pubmed]
WikiGenes - Universities