The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

sn-Gro-1-P     [(2R)-2,3- dihydroxypropoxy]phosphonic acid

Synonyms: CHEBI:15978, CHEBI:17106, HMDB00126, AKOS006273069, DB02515, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Phosphatidyl glycerol

 

Psychiatry related information on Phosphatidyl glycerol

  • Glycerolipid formation from GP was decreased significantly during food deprivation, in experimental diabetes, in the presence of lipolytic hormone, and during aging [6].
 

High impact information on Phosphatidyl glycerol

 

Chemical compound and disease context of Phosphatidyl glycerol

 

Biological context of Phosphatidyl glycerol

 

Anatomical context of Phosphatidyl glycerol

 

Associations of Phosphatidyl glycerol with other chemical compounds

  • Furthermore, growth improvement by the SFKs on high NaCl plus FK506 was shown to require GPD1, which encodes an NADH-dependent glycerol-3-phosphate dehydrogenase that is important for the production of glycerol in response to osmotic stress [25].
  • A full-length 2.4-kb cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) was cloned from rat liver using PCR techniques [2].
  • This laboratory has been characterizing protein serine/threonine kinase reactions of hematopoietic tissues, whose most distinguishing characteristics in vitro are stimulation with vesicular phosphatidyl glycerol, and the ability to function using Mn2+ as the sole divalent cation [26].
  • A rate-limiting enzyme activity in the glycerol 3-phosphate pathway of triacylglycerol synthesis, glycerol-3-phosphate acyltransferase, was at levels comparable with rat jejunum and remained unchanged during differentiation [27].
  • Furthermore, mitochondrial glycerol-3-phosphate acyltransferase activity was reduced by 42% in liver of Scd1-/- mice; however, the activities of microsomal glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and ethanolamine phosphotransferase were not affected by Scd1 mutation [28].
 

Gene context of Phosphatidyl glycerol

 

Analytical, diagnostic and therapeutic context of Phosphatidyl glycerol

References

  1. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Lu, Y.J., Zhang, Y.M., Grimes, K.D., Qi, J., Lee, R.E., Rock, C.O. Mol. Cell (2006) [Pubmed]
  2. Cloning of a cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase from rat liver and its regulation by thyroid hormones. Müller, S., Seitz, H.J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  3. Glycerol-3-phosphate dehydrogenase activity in the red cells of patients with thalassemia. Fessas, P., Anagnou, N.P., Loukopoulos, D. Blood (1980) [Pubmed]
  4. Studies on some lipogenic enzymes of cultured myeloid leukemic cells. Okuma, M., Ichikawa, Y., Yamashita, S., Kitajima, K., Numa, S. Blood (1976) [Pubmed]
  5. Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. Larson, T.J., Ye, S.Z., Weissenborn, D.L., Hoffmann, H.J., Schweizer, H. J. Biol. Chem. (1987) [Pubmed]
  6. Adipose glycerolipid formation: effect of nutritional and hormonal states. Jamdar, S.C., Cao, W.F. Lipids (1993) [Pubmed]
  7. Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states. Heimberg, M., Olubadewo, J.O., Wilcox, H.G. Endocr. Rev. (1985) [Pubmed]
  8. Tissue preference and differentiation of malignant rat x mouse hybrid cells in chimaeric mouse fetuses. Duboule, D., Croce, C.M., Illmensee, K. EMBO J. (1982) [Pubmed]
  9. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Shen, W., Wei, Y., Dauk, M., Tan, Y., Taylor, D.C., Selvaraj, G., Zou, J. Plant Cell (2006) [Pubmed]
  10. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Nandi, A., Welti, R., Shah, J. Plant Cell (2004) [Pubmed]
  11. Interaction of sn-glycerol 3-phosphorothioate with Escherichia coli. In vitro and in vivo incorporation into phospholipids. Orr, G.A., Hammelburger, J.W., Heney, G. J. Biol. Chem. (1983) [Pubmed]
  12. The involvement of guanosine 5-diphosphate-3-diphosphate in the regulation of phospholipid biosynthesis in Escherichia coli. Lack of ppGpp inhibition of acyltransfer from acyl-ACP to sn-glycerol 3-phosphate. Lueking, D.R., Goldfine, H. J. Biol. Chem. (1975) [Pubmed]
  13. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. Schryvers, A., Lohmeier, E., Weiner, J.H. J. Biol. Chem. (1978) [Pubmed]
  14. Membrane phospholipid synthesis in Escherichia coli. Cloning of a structural gene (plsB) of the sn-glycerol-3-phosphate acyl/transferase. Lightner, V.A., Larson, T.J., Tailleur, P., Kantor, G.D., Raetz, C.R., Bell, R.M., Modrich, P. J. Biol. Chem. (1980) [Pubmed]
  15. Hepatic triacylglycerol synthesizing activity during progression of alcoholic liver injury in the baboon. Savolainen, M.J., Baraona, E., Pikkarainen, P., Lieber, C.S. J. Lipid Res. (1984) [Pubmed]
  16. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium. Saneto, R.P., de Vellis, J. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  17. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Moon, B.Y., Higashi, S., Gombos, Z., Murata, N. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. Altered adipokine response in murine 3T3-F442A adipocytes treated with protease inhibitors and nucleoside reverse transcriptase inhibitors. Jones, S.P., Janneh, O., Back, D.J., Pirmohamed, M. Antivir. Ther. (Lond.) (2005) [Pubmed]
  19. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. Larson, T.J., Ehrmann, M., Boos, W. J. Biol. Chem. (1983) [Pubmed]
  20. Partial NH2- and COOH-terminal sequence and cyanogen bromide peptide analysis of Escherichia coli sn-glycerol-3-phosphate acyltransferase. Green, P.R., Vanaman, T.C., Modrich, P., Bell, R.M. J. Biol. Chem. (1983) [Pubmed]
  21. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Farese, R.V., Standaert, M.L., Yamada, K., Huang, L.C., Zhang, C., Cooper, D.R., Wang, Z., Yang, Y., Suzuki, S., Toyota, T. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  22. Characterization of active and latent forms of the membrane-associated sn-glycerol-3-phosphate acyltransferase of Escherichia coli. Scheideler, M.A., Bell, R.M. J. Biol. Chem. (1991) [Pubmed]
  23. 1-Alkyl-sn-glycero-3-phosphate: acyl-CoA acyltransferase in rat brain microsomes. Fleming, P.J., Hajra, A.K. J. Biol. Chem. (1977) [Pubmed]
  24. DPN-linked sn-glycerol-3-phosphate dehydrogenase. Cyclopentanoid analogues mimic the active rotameric state of the natural substrate. Weissman, J.D., Hancock, A.J., MacQuarrie, R., Lee-Abrahams, I.S., Sable, H.Z. J. Biol. Chem. (1982) [Pubmed]
  25. Identification of Ald6p as the target of a class of small-molecule suppressors of FK506 and their use in network dissection. Butcher, R.A., Schreiber, S.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  26. The 47-kD fragment of talin is a substrate for protein kinase P. Simons, P.C., Elias, L. Blood (1993) [Pubmed]
  27. Fatty acid esterification during differentiation of the human intestinal cell line Caco-2. Trotter, P.J., Storch, J. J. Biol. Chem. (1993) [Pubmed]
  28. Stearoyl-CoA desaturase 1 deficiency increases CTP:choline cytidylyltransferase translocation into the membrane and enhances phosphatidylcholine synthesis in liver. Dobrzyn, A., Dobrzyn, P., Miyazaki, M., Sampath, H., Chu, K., Ntambi, J.M. J. Biol. Chem. (2005) [Pubmed]
  29. Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae. Bunoust, O., Devin, A., Avéret, N., Camougrand, N., Rigoulet, M. J. Biol. Chem. (2005) [Pubmed]
  30. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. Påhlman, I.L., Larsson, C., Averét, N., Bunoust, O., Boubekeur, S., Gustafsson, L., Rigoulet, M. J. Biol. Chem. (2002) [Pubmed]
  31. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. Liang, G., Yang, J., Horton, J.D., Hammer, R.E., Goldstein, J.L., Brown, M.S. J. Biol. Chem. (2002) [Pubmed]
  32. Mouse sn-glycerol-3-phosphate dehydrogenase: molecular cloning and genetic mapping of a cDNA sequence. Kozak, L.P., Birkenmeier, E.H. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  33. Polymorphism for the number of tandemly multiplicated glycerol-3-phosphate dehydrogenase genes in Drosophila melanogaster. Takano, T., Kusakabe, S., Koga, A., Mukai, T. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  34. Cell-free synthesis of a putative precursor to the rat liver mitochondrial glycerol-3-phosphate dehydrogenase. Garrib, A., McMurray, W.C. J. Biol. Chem. (1988) [Pubmed]
  35. Expression, purification, and characterization of CTP:glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis. Park, Y.S., Sweitzer, T.D., Dixon, J.E., Kent, C. J. Biol. Chem. (1993) [Pubmed]
 
WikiGenes - Universities