The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization.

The alanine racemase (EC 5.1.1.1) gene of a thermophilic bacterium, Bacillus stearothermophilus, was cloned and expressed in Escherichia coli C600 with vector plasmid pICR301, which was constructed from pBR322 and the L-alanine dehydrogenase gene derived from B. stearothermophilus. A coupled assay method with L-alanine dehydrogenase and tetrazolium salts was used to detect visually the alanine racemase activity in the clones. Alanine racemase overproduced in a clone carrying the plasmid pICR4, 12 kilobases of DNA, was purified from cell extracts about 340-fold to homogeneity by five steps including heat treatment. The overproduced enzyme was confirmed to originate from B. stearothermophilus by an immunochemical cross-reaction with the enzyme of B. stearothermophilus. The purified enzyme has a molecular weight of about 78 000 and consists of two identical subunits of Mr of 39 000. At the optimum temperature (50 degrees C), the enzyme has a specific activity of 1800 units/mg (Vmax, D- to L-alanine). Resolution and reconstitution experiments together with the absorption spectrum of the enzyme clearly indicate that alanine racemase of B. stearothermophilus is a pyridoxal 5'-phosphate enzyme.[1]

References

  1. Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Inagaki, K., Tanizawa, K., Badet, B., Walsh, C.T., Tanaka, H., Soda, K. Biochemistry (1986) [Pubmed]
 
WikiGenes - Universities