Genetic mapping of nuclear mucidin resistance mutations in Saccharomyces cerevisiae. A new pdr locus on chromosome II.
In the yeast Saccharomyces cerevisiae, two nuclear pleiotropic drug resistance mutations pdr3-1 (former designation mucPR) and pdr3-2 (former designation DRI9/T7) have been selected as resistant to mucidin and as resistant to chloramphenicol plus cycloheximide, respectively. The pdr3 mutations were found not to affect the plasma membrane ATPase activity measured in a crude membrane fraction. Meiotic mapping using strains with standard genetic markers revealed that mutation pdr3-1 is centromere linked on the left arm of chromosome II at a distance of 5.9 +/- 3.3 cM from its centromere and 11.6 +/- 3.1 cM from the marker pet9. The centromere linked pdr3-2 mutation exhibited also genetic linkage to pet9 with a map distance of 9.8 +/- 3.2 cM. These results indicate that pdr3-1 and pdr3-2 are alleles of the same pleiotropic drug resistance locus PDR3 which is involved in the control of the plasma membrane permeability in yeast.[1]References
- Genetic mapping of nuclear mucidin resistance mutations in Saccharomyces cerevisiae. A new pdr locus on chromosome II. Subik, J., Ulaszewski, S., Goffeau, A. Curr. Genet. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg