Reevaluation of taurine levels and distribution of cysteic acid decarboxylase in developing human fetal brain regions.
The possibilities of interference by glycerophosphoryl ethanolamine (GPE) in the estimation of taurine levels in cerebral cortex, midbrain, cerebellum, medullapons, and spinal cord of developing human fetal brain regions were eliminated by hydrolyzing tissue extracts with 6 M HCl. Cysteic acid thus produced was separated from taurine by ion-exchange chromatography using Biorad-AG resin. Fluorescamine was used as fluorogen. Data reveal that the estimation of taurine in human fetal brain regions is affected if GPE is present as a contaminant in the assay system. Cysteic acid decarboxylase activity was measured using cysteic acid as the substrate. Higher enzymic activity was recorded with increased fetal body weight, but the reverse was true for taurine level.[1]References
- Reevaluation of taurine levels and distribution of cysteic acid decarboxylase in developing human fetal brain regions. Datta, S.C. J. Neurochem. (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg