The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

cysteate     2-amino-3-sulfo-propanoic acid

Synonyms: Cepteate, Cipteate, Cysterate, Cysteinic acid, Cysteic Acid, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of cysteate

 

High impact information on cysteate

 

Chemical compound and disease context of cysteate

 

Biological context of cysteate

 

Anatomical context of cysteate

 

Associations of cysteate with other chemical compounds

 

Gene context of cysteate

  • Surprisingly, cysteic acid was the most potent stimulant of SRIF release, with a minimal effective dose of 0.1 microM [26].
  • 5. However, lowering the assay pH to 5.5 significantly enhanced the interaction of the ASCT1 carrier with anionic amino acids such as cysteate, in a pH-dependent manner [27].
  • Amino acid analysis of performic acid-oxidized MSA revealed 2--3 cysteic acid residues, and reduction and alkylation resulted in loss of biologic residues, and reduction and alkylation resulted in loss of biologic activity [28].
  • Amino acid composition analysis revealed that cysteic acid was generated upon Fe2+/ascorbate addition to PEPCK [29].
  • In fact, direct incubation of bovine serum albumin (BSA) with peroxodisulfate and periodate barely alters the isoelectric point (pI) and does not produce any cysteic acid [30].
 

Analytical, diagnostic and therapeutic context of cysteate

References

  1. Uptake of 14C-labeled dicarboxylic amino acids in hepatocytes and hepatoma cells. Koch, M.R., Lea, M.A. Cancer Res. (1981) [Pubmed]
  2. Utilization of L-methionine sulfoxide, L-methionine sulfone and cysteic acid by the weanling rat. Anderson, G.H., Ashley, D.V., Jones, J.D. J. Nutr. (1976) [Pubmed]
  3. Temporal sequence of the recovery of traits during phenotypic curing of a Cytophaga johnsonae motility mutant. Gorski, L., Leadbetter, E.R., Godchaux, W. J. Bacteriol. (1991) [Pubmed]
  4. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Lie, T.J., Godchaux, W., Leadbetter, E.R. Appl. Environ. Microbiol. (1999) [Pubmed]
  5. An NMR study of alterations in [1-13C]glucose metabolism in C6 glioma cells by gliotoxic amino acids. Brennan, L., Hewage, C., Malthouse, J.P., McBean, G.J. Neurochem. Int. (2003) [Pubmed]
  6. Human Ran cysteine 112 oxidation by pervanadate regulates its binding to keratins. Tao, G.Z., Zhou, Q., Strnad, P., Salemi, M.R., Lee, Y.M., Omary, M.B. J. Biol. Chem. (2005) [Pubmed]
  7. Xylosyl transfer to the core protein precursor of the rat chondrosarcoma proteoglycan. Lohmander, L.S., Shinomura, T., Hascall, V.C., Kimura, J.H. J. Biol. Chem. (1989) [Pubmed]
  8. Protein 4.1 in sickle erythrocytes. Evidence for oxidative damage. Schwartz, R.S., Rybicki, A.C., Heath, R.H., Lubin, B.H. J. Biol. Chem. (1987) [Pubmed]
  9. Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids. Makowske, M., Christensen, H.N. J. Biol. Chem. (1982) [Pubmed]
  10. Function of sulfhydryl groups in ribosome-elongation factor G reactions. Assignment of guanine nucleotide binding site to elongation factor G. Marsh, R.C., Chinali, G., Parmeggiani, A. J. Biol. Chem. (1975) [Pubmed]
  11. The utilization and safety of isomeric sulfur-containing amino acids in mice. Friedman, M., Gumbmann, M.R. J. Nutr. (1984) [Pubmed]
  12. Cysteine is not an obligatory intermediate in the biosynthesis of cysteate by Cytophaga johnsonae. Gilmore, D.F., Godchaux, W., Leadbetter, E.R. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  13. Action of cystine in the cytotoxic response of Escherichia coli cells exposed to hydrogen peroxide. Cantoni, O., Brandi, G., Albano, A., Cattabeni, F. Free Radic. Res. (1995) [Pubmed]
  14. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Rein, U., Gueta, R., Denger, K., Ruff, J., Hollemeyer, K., Cook, A.M. Microbiology (Reading, Engl.) (2005) [Pubmed]
  15. Cysteine sulfinic acid in the central nervous system: specific binding of [35S]cysteic acid to cortical synaptic membranes--an investigation of possible binding sites for cysteine sulfinic acid. Iwata, H., Yamagami, S., Baba, A. J. Neurochem. (1982) [Pubmed]
  16. Dietary cysteic acid serves as a precursor of taurine for cats. Edgar, S.E., Hickman, M.A., Marsden, M.M., Morris, J.G., Rogers, Q.R. J. Nutr. (1994) [Pubmed]
  17. Amino acid neurotransmitters in the CNS. Characteristics of the acidic amino acid exchange. Erecińska, M., Troeger, M.B. FEBS Lett. (1986) [Pubmed]
  18. The neurotoxicity of sulfur-containing amino acids in energy-deprived rat hippocampal slices. Schurr, A., West, C.A., Heine, M.F., Rigor, B.M. Brain Res. (1993) [Pubmed]
  19. Comparative study of carbohydrate-protein complexes. III. Peptide structures of the linkage region in proteoglycans of human, porcine and shark cartilages. Isemura, M., Hanyu, T., Kosaka, H., Ono, T., Ikenaka, T. J. Biochem. (1981) [Pubmed]
  20. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate. Wilson, D.F., Pastuszko, A. J. Neurochem. (1986) [Pubmed]
  21. L-glutamate-stimulated taurine release from rat cerebral cultured astrocytes. Koyama, Y., Ishibashi, T., Tanaka, K., Baba, A. J. Neurosci. Res. (1994) [Pubmed]
  22. Endogenous sulphur-containing amino acids: potent agonists at presynaptic metabotropic glutamate autoreceptors in the rat central nervous system. Croucher, M.J., Thomas, L.S., Ahmadi, H., Lawrence, V., Harris, J.R. Br. J. Pharmacol. (2001) [Pubmed]
  23. Simultaneous analysis of sulfur-containing excitatory amino acids using micellar electrokinetic chromatography with diode array and laser-induced fluorescence detection. Becker, A., Scheuch, E., Bode, U., Jaehde, U. Electrophoresis (2002) [Pubmed]
  24. Total urinary hydroxyproline determined with rapid and simple high-performance liquid chromatography. Paroni, R., De Vecchi, E., Fermo, I., Arcelloni, C., Diomede, L., Magni, F., Bonini, P.A. Clin. Chem. (1992) [Pubmed]
  25. Site-directed mutagenesis and molecular modeling identify a crucial amino acid in specifying the heparin affinity of FGF-1. Patrie, K.M., Botelho, M.J., Franklin, K., Chiu, I.M. Biochemistry (1999) [Pubmed]
  26. Stimulation of somatostatin release from median eminence tissue incubated in vitro by taurine and related amino acids. Aguila, M.C., McCann, S.M. Endocrinology (1985) [Pubmed]
  27. Expressed human hippocampal ASCT1 amino acid transporter exhibits a pH-dependent change in substrate specificity. Tamarappoo, B.K., McDonald, K.K., Kilberg, M.S. Biochim. Biophys. Acta (1996) [Pubmed]
  28. Multiplication-stimulating activity (MSA): a somatomedin-like polypeptide from cultured rat liver cells. Nissley, S.P., Rechler, M.M. National Cancer Institute monograph. (1978) [Pubmed]
  29. Affinity cleavage at the metal-binding site of phosphoenolpyruvate carboxykinase. Hlavaty, J.J., Nowak, T. Biochemistry (1997) [Pubmed]
  30. Oxidation of cysteine to cysteic acid in proteins by peroxyacids, as monitored by immobilized pH gradients. Chiari, M., Ettori, C., Righetti, P.G., Colonna, S., Gaggero, N., Negri, A. Electrophoresis (1991) [Pubmed]
  31. Penicillin biosynthesis: intermediates of biosynthesis of delta-L-alpha-aminoadipyl-L-cysteinyl-D-valine formed by ACV synthetase from Acremonium chrysogenum. Kallow, W., Neuhof, T., Arezi, B., Jungblut, P., von Döhren, H. FEBS Lett. (1997) [Pubmed]
  32. Tissue and regional distribution of cysteic acid decarboxylase. A new assay method. Wu, J.Y., Moss, L.G., Chen, M.S. Neurochem. Res. (1979) [Pubmed]
 
WikiGenes - Universities