The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig jejunal brush-border membrane.

D-glucose transport across the intestinal brush-border membrane involves two transport systems designated here as systems 1 and 2. Kinetic properties for both D-glucose and methyl alpha-D-glucopyranoside transport were measured at 35 degrees C by using brush-border membrane vesicles prepared from either control, fasted (48 hr), or semistarved (10 days) animals. The results show the following: (i) The sugar influx rate by simple diffusion was identical under either altered condition. (ii) Semistarvation stimulated D-glucose uptake by system 2 (both its Vmax and Km increased), whereas system 1 was untouched. (iii) Fasting increased the capacity of system 1 without affecting either Km of system 1 or Vmax and Km of system 2. The effect of fasting on Vmax of system 1 cannot be attributed to indirect effects from changes in ionic permeability because the kinetic difference between control and fasted animals persisted when the membrane potential was short-circuited with equilibrated K+ and valinomycin. This work provides further evidence for the existence of two distinct sodium-activated D-glucose transport systems in the intestinal brush-border membrane, which adapt independently to either semistarvation or fasting.[1]

References

  1. Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig jejunal brush-border membrane. Brot-Laroche, E., Dao, M.T., Alcalde, A.I., Delhomme, B., Triadou, N., Alvarado, F. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
 
WikiGenes - Universities