The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Resonance Raman spectroscopic evidence for heme iron-hydroxide ligation in peroxidase alkaline forms.

Horseradish peroxidase will convert from a five-coordinate high-spin heme at neutral pH to a six-coordinate low-spin heme at alkaline pH. Though alkaline forms of other heme proteins such as hemoglobin and myoglobin are known to contain a heme-ligated hydroxide, alkaline horseradish peroxidase has been considered not to contain a ligated hydroxide. Several alternatives have been proposed which would be stronger field ligands than a hydroxide ion. In this report we provide resonance Raman evidence, using Soret excitation, that alkaline horseradish peroxidase does in fact contain a heme iron-ligated hydroxyl group. The band was located for isoenzymes C and A-1 by its sensitivity to 18O substitution and confirmed with 54Fe, 57Fe, and 2H. An isoenzyme of turnip peroxidase was investigated and found to also contain a ligated hydroxide at alkaline pH. The observed peroxidase Fe(III)-OH frequencies are 15-25 cm-1 higher than the corresponding frequencies of alkaline methemoglobin and metmyoglobin and correlate with changes in spin-state distribution. This is explained in the context of hydrogen bonding to a distal histidine which results in increased ligand field strength facilitating the formation of low-spin hemes. It has been demonstrated that the ferryl/ferric redox potential of horseradish peroxidase is markedly lowered at alkaline pH (Hayashi, Y., and Yamazaki, I. (1979) J. Biol. Chem. 254, 9101-9106). These observations are rationalized in terms of oxidation of a ligated ferric hydroxyl group facilitated through base catalysis by a distal histidine.[1]


WikiGenes - Universities