The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Active-site- and substrate-specificity of Thermoanaerobium Tok6-B1 pullulanase.

Thermoanaerobium Tok6-B1 pullulanase (EC 3.2.1.41) was active on alpha 1-6-glucosidic linkages of pullulan, amylopectin and glycogen and the alpha 1-4 linkages of amylose, amylopectin and glycogen but not of pullulan. Hydrolysis of short-chain-length malto-oligosaccharides (seven or fewer glucose residues) yielded maltose as product. Pullulan hydrolysis was pH-dependent and a plot of log(V/Km) versus pH implied a carboxy group with pKa 4.3 at the active site. Modification with 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide (EDAC) confirmed this view, and analysis of the order of reaction and inactivation kinetics suggested the presence of a single carboxy group at a catalytic centre of the active site. EDAC-mediated inhibition of pullulan alpha 1-6-bond hydrolysis was relieved by amylose or pullulan. Similarly both pullulan and amylose protected the activity directed at alpha 1-4 bonds of amylose from EDAC inhibition. When both amylose and pullulan were simultaneously present, the observed rate of product formation closely fitted a kinetic model in which both substrates were hydrolysed at the same active site.[1]

References

  1. Active-site- and substrate-specificity of Thermoanaerobium Tok6-B1 pullulanase. Plant, A.R., Clemens, R.M., Morgan, H.W., Daniel, R.M. Biochem. J. (1987) [Pubmed]
 
WikiGenes - Universities