The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AMYLOPECTIN     (2R,3R,4S,5S,6R)-2- [(2R,3S,4R,5R,6S)-2...

Synonyms: Amylopectine, CPD-7043, SureCN2046142, HMDB03255, AKOS015916501, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of AMYLOPECTIN

 

High impact information on AMYLOPECTIN

 

Chemical compound and disease context of AMYLOPECTIN

 

Biological context of AMYLOPECTIN

  • An amylose-free starch with short-chain amylopectin was produced by simultaneous antisense downregulation of three starch synthase genes [14].
  • Methylation and debranching of the purified amylopectin fraction clearly show a decrease in the number of intermediate size glucans (dp8 to 50) and an absolute and relative increase of very short glucans (dp2 to 7) [15].
  • These include differential enzymatic hydrolysis of amylose and amylopectin and the presence of lipid-starch complexes in the amylose-containing rice [16].
  • After 3 d of excess energy intake, breath hydrogen after amylose was still significantly greater than after amylopectin (P < 0.019); fasting breath hydrogen of the control subjects after amylose more closely resembled that of the HI subjects [17].
  • Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis [18].
 

Anatomical context of AMYLOPECTIN

  • Positively charged amylopectin, which is a major constituent of cationic starch, was used to modify the inner surface of fused-silica capillaries by addition to the running solution, which was subsequently employed in CE [19].
  • We thus propose that the waxy gene product conditions not only the synthesis of amylose from endosperm storage tissue in higher-plant amyloplasts but also that of amylose and a fraction of amylopectin in all starch-accumulating plastids [20].
  • In oocysts stored at 22, 32 and 41.5 degrees C, amylopectin declined to approximately 20% within 162, 76, and 41 days, respectively [21].
  • We have performed an ultrastructural analysis of amylopectin granules from the oocyst residual body and sporozoites of Cryptosporidium parvum [22].
  • Muscle biopsy findings at the age of 58 years showed deposition of amylopectin-like material in muscle fibers and the absence of histochemical PFK activity [23].
 

Associations of AMYLOPECTIN with other chemical compounds

 

Gene context of AMYLOPECTIN

 

Analytical, diagnostic and therapeutic context of AMYLOPECTIN

References

  1. Chimerism after liver transplantation for type IV glycogen storage disease and type 1 Gaucher's disease. Starzl, T.E., Demetris, A.J., Trucco, M., Ricordi, C., Ildstad, S., Terasaki, P.I., Murase, N., Kendall, R.S., Kocova, M., Rudert, W.A. N. Engl. J. Med. (1993) [Pubmed]
  2. A new variant of type IV glycogenosis: deficiency of branching enzyme activity without apparent progressive liver disease. Greene, H.L., Brown, B.I., McClenathan, D.T., Agostini, R.M., Taylor, S.R. Hepatology (1988) [Pubmed]
  3. Expression of Escherichia coli branching enzyme in tubers of amylose-free transgenic potato leads to an increased branching degree of the amylopectin. Kortstee, A.J., Vermeesch, A.M., de Vries, B.J., Jacobsen, E., Visser, R.G. Plant J. (1996) [Pubmed]
  4. Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. Katsuya, Y., Mezaki, Y., Kubota, M., Matsuura, Y. J. Mol. Biol. (1998) [Pubmed]
  5. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Ball, S., Guan, H.P., James, M., Myers, A., Keeling, P., Mouille, G., Buléon, A., Colonna, P., Preiss, J. Cell (1996) [Pubmed]
  6. Studies on the binding of amylopectin sulfate with gastric mucin. Kim, Y.S., Bella, A., Whitehead, J.S., Isaacs, R., Remer, L. Gastroenterology (1975) [Pubmed]
  7. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Slade, A.J., Fuerstenberg, S.I., Loeffler, D., Steine, M.N., Facciotti, D. Nat. Biotechnol. (2005) [Pubmed]
  8. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Tetlow, I.J., Wait, R., Lu, Z., Akkasaeng, R., Bowsher, C.G., Esposito, S., Kosar-Hashemi, B., Morell, M.K., Emes, M.J. Plant Cell (2004) [Pubmed]
  9. cDNA sequence and heterologous expression of monomeric spinach pullulanase: multiple isomeric forms arise from the same polypeptide. Renz, A., Schikora, S., Schmid, R., Kossmann, J., Beck, E. Biochem. J. (1998) [Pubmed]
  10. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Kamasaka, H., Sugimoto, K., Takata, H., Nishimura, T., Kuriki, T. Appl. Environ. Microbiol. (2002) [Pubmed]
  11. Nonencapsulated Neisseria meningitidis strain produces amylopectin from sucrose: altering the concept for differentiation between N. meningitidis and N. polysaccharea. Zhu, P., Tsang, R.S., Tsai, C.M. J. Clin. Microbiol. (2003) [Pubmed]
  12. Intra-axonal polysaccharide deposits in the peripheral nerve seen in adult polysaccharide storage myopathy. Komure, O., Ichikawa, K., Tsutsumi, A., Hiyama, K., Fujioka, A. Acta Neuropathol. (1985) [Pubmed]
  13. Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Takata, H., Takaha, T., Okada, S., Hizukuri, S., Takagi, M., Imanaka, T. Carbohydr. Res. (1996) [Pubmed]
  14. Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Jobling, S.A., Westcott, R.J., Tayal, A., Jeffcoat, R., Schwall, G.P. Nat. Biotechnol. (2002) [Pubmed]
  15. Toward an understanding of the biogenesis of the starch granule. Evidence that Chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. Fontaine, T., D'Hulst, C., Maddelein, M.L., Routier, F., Pépin, T.M., Decq, A., Wieruszeski, J.M., Delrue, B., Van den Koornhuyse, N., Bossu, J.P. J. Biol. Chem. (1993) [Pubmed]
  16. The effect of amylose content on insulin and glucose responses to ingested rice. Goddard, M.S., Young, G., Marcus, R. Am. J. Clin. Nutr. (1984) [Pubmed]
  17. Breath-hydrogen production and amylose content of the diet. Behall, K.M., Howe, J.C. Am. J. Clin. Nutr. (1997) [Pubmed]
  18. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Kubo, A., Rahman, S., Utsumi, Y., Li, Z., Mukai, Y., Yamamoto, M., Ugaki, M., Harada, K., Satoh, H., Konik-Rose, C., Morell, M., Nakamura, Y. Plant Physiol. (2005) [Pubmed]
  19. Cationic amylopectin derivatives as additives for analysis of proteins in capillary electrophoresis. Kato, M., Imamura, E., Sakai-Kato, K., Nakajima, T., Toyo'oka, T. Electrophoresis (2006) [Pubmed]
  20. Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. Delrue, B., Fontaine, T., Routier, F., Decq, A., Wieruszeski, J.M., Van Den Koornhuyse, N., Maddelein, M.L., Fournet, B., Ball, S. J. Bacteriol. (1992) [Pubmed]
  21. Effects of storage time and temperature on amylopectin levels and oocyst production of Eimeria meleagrimitis oocysts. Augustine, P.C. Parasitology (1980) [Pubmed]
  22. Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Harris, J.R., Adrian, M., Petry, F. Parasitology (2004) [Pubmed]
  23. Partial block of glycolysis in late-onset phosphofructokinase deficiency myopathy. Massa, R., Lodi, R., Barbiroli, B., Servidei, S., Sancesario, G., Manfredi, G., Zaniol, P., Bernardi, G. Acta Neuropathol. (1996) [Pubmed]
  24. Hydration of the amylopectin branch point. Evidence of restricted conformational diversity of the alpha-(1-->6) linkage. Corzana, F., Motawia, M.S., Hervé du Penhoat, C., van den Berg, F., Blennow, A., Perez, S., Engelsen, S.B. J. Am. Chem. Soc. (2004) [Pubmed]
  25. Polymeric carrier of proline analogue with antifibrotic effect in pulmonary vascular remodeling. Poiani, G.J., Kemnitzer, J.E., Fox, J.D., Tozzi, C.A., Kohn, J., Riley, D.J. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  26. Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men. Anderson, G.H., Catherine, N.L., Woodend, D.M., Wolever, T.M. Am. J. Clin. Nutr. (2002) [Pubmed]
  27. Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Kötting, O., Pusch, K., Tiessen, A., Geigenberger, P., Steup, M., Ritte, G. Plant Physiol. (2005) [Pubmed]
  28. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Bruno, C., van Diggelen, O.P., Cassandrini, D., Gimpelev, M., Giuffrè, B., Donati, M.A., Introvini, P., Alegria, A., Assereto, S., Morandi, L., Mora, M., Tonoli, E., Mascelli, S., Traverso, M., Pasquini, E., Bado, M., Vilarinho, L., van Noort, G., Mosca, F., DiMauro, S., Zara, F., Minetti, C. Neurology (2004) [Pubmed]
  29. The starch-related R1 protein is an alpha -glucan, water dikinase. Ritte, G., Lloyd, J.R., Eckermann, N., Rottmann, A., Kossmann, J., Steup, M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  30. Evidence for distinct mechanisms of starch granule breakdown in plants. Delatte, T., Umhang, M., Trevisan, M., Eicke, S., Thorneycroft, D., Smith, S.M., Zeeman, S.C. J. Biol. Chem. (2006) [Pubmed]
  31. Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Delvallé, D., Dumez, S., Wattebled, F., Roldán, I., Planchot, V., Berbezy, P., Colonna, P., Vyas, D., Chatterjee, M., Ball, S., Mérida, A., D'Hulst, C. Plant J. (2005) [Pubmed]
  32. Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure. Stahl, Y., Coates, S., Bryce, J.H., Morris, P.C. Plant J. (2004) [Pubmed]
  33. Expression of Escherichia coli glycogen synthase in the tubers of transgenic potatoes (Solanum tuberosum) results in a highly branched starch. Shewmaker, C.K., Boyer, C.D., Wiesenborn, D.P., Thompson, D.B., Boersig, M.R., Oakes, J.V., Stalker, D.M. Plant Physiol. (1994) [Pubmed]
  34. The phosphorylation site in double helical amylopectin as investigated by a combined approach using chemical synthesis, crystallography and molecular modeling. Engelsen, S.B., Madsen, A.Ø., Blennow, A., Motawia, M.S., Møller, B.L., Larsen, S. FEBS Lett. (2003) [Pubmed]
  35. Amylopectin starch promotes the development of insulin resistance in rats. Byrnes, S.E., Miller, J.C., Denyer, G.S. J. Nutr. (1995) [Pubmed]
 
WikiGenes - Universities