Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase.
The amino acid sequence of Escherichia coli CTP synthetase was derived from the nucleotide sequence of pyrG. The derived amino acid sequence, confirmed at the N terminus by protein sequencing, predicts a subunit of 544 amino acids having a calculated Mr of 60,300 after removal of the initiator methionine. A glutamine amide transfer domain was identified which extends from approximately amino acid residue 300 to the C terminus of the molecule. The CTP synthetase glutamine amide transfer domain contains three conserved regions similar to those in GMP synthetase, anthranilate synthase, p-aminobenzoate synthase, and carbamoyl-P synthetase. The CTP synthetase structure supports a model for gene fusion of a trpG-related glutamine amide transfer domain to a primitive NH3-dependent CTP synthetase. The major 5' end of pyrG mRNA was localized to a position approximately 48 base pairs upstream of the translation initiation codon. Translation of the gene eno, encoding enolase, is initiated 89 base pairs downstream of pyrG. The pyrG-eno junction is characterized by multiple mRNA species which are ascribed to monocistronic pyrG and/or eno mRNAs and a pyrG eno polycistronic mRNA.[1]References
- Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. Weng, M., Makaroff, C.A., Zalkin, H. J. Biol. Chem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg