Experimental chemotherapy of human medulloblastoma with classical alkylators.
Seven classical alkylators were tested for activity against the continuous human medulloblastoma cell line TE-671 grown in vitro and as s.c. and intracranial xenografts in athymic mice. Drugs tested included melphalan, cyclophosphamide (4-hydroperoxycyclophosphamide in vitro), iphosphamide (4-hydroperoxyiphosphamide in vitro), phenylketocyclo-phosphamide, phenylketoiphosphamide, Asta Z 7557, and thiotriethyl-enephosphoramide. All agents were active, with melphalan demonstrating the most activity in vitro and in vivo. Comparative studies of cyclophosphamide and phenylketocyclophosphamide revealed partition coefficients (log P) of 0.73 and greater than 1.69, respectively, and cyclophosphamide exhibited greater cytotoxic activity in post- (equitoxic) drug administration murine plasma. Hematological toxicity was limited to leukopenia/neutropenia for both of these agents. These studies suggest that the classical alkylators may have a role in the treatment of medulloblastoma and provide a means to further analyze their therapeutic potential.[1]References
- Experimental chemotherapy of human medulloblastoma with classical alkylators. Friedman, H.S., Colvin, O.M., Ludeman, S.M., Schold, S.C., Boyd, V.L., Mulhbaier, L.H., Bigner, D.D. Cancer Res. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg