Calmodulin N-methyltransferase. Partial purification and characterization.
The distribution, properties, and substrate specificity of S-adenosylmethionine:calmodulin (lysine) N-methyltransferse (EC 2.1.1.60, calmodulin N-methyltransferase) of the rat have been studied. This enzyme is cytosolic and is found at high levels in tissues with high levels of calmodulin and at low levels in tissues with little calmodulin. In liver, heart, and skeletal muscle, which have low levels of calmodulin and very low calmodulin N-methyltransferase activity (a low ratio of calmodulin N-methyltransferase to calmodulin), calmodulin was found to be incompletely methylated, as judged by its ability to act as a substrate for purified calmodulin N-methyltransferase. Calmodulin N-methyltransferase was purified 470-fold with a 33% yield from rat testis cytosol, using ammonium sulfate precipitation and chromatography on DEAE-cellulose, CM-Sepharose, and Sephadex G-100. At pH 7.4, calmodulin N-methyltransferase did not bind to DEAE-cellulose, but bound strongly to CM-Sepharose. The enzyme eluted from Sephadex G-100 with an apparent molecular weight of 55,000. Purified calmodulin N-methyltransferase was incubated with extracts of rat tissues, and [methyl-3H]AdoMet and methylated proteins were resolved by electrophoresis in an attempt to discover substances other than calmodulin, but this enzyme only catalyzed the methylation of calmodulin, indicating a high degree of substrate specificity. Conditions were established for the in vitro preparative methylation of des(methyl)-calmodulin from Dictyostelium discoideum. Three moles of methyl/mol of calmodulin were incorporated into lysine 115 of des(methyl)calmodulin, resulting in the formation of 1 mol of trimethyllysine at the site normally methylated in calmodulins from most species. Activation of cyclic nucleotide phosphodiesterase by des(methyl)calmodulin was indistinguishable from activation by in vitro methylated or sham methylated Dictyostelium calmodulin, indicating that methylation does not affect the ability of calmodulin to activate this enzyme.[1]References
- Calmodulin N-methyltransferase. Partial purification and characterization. Rowe, P.M., Wright, L.S., Siegel, F.L. J. Biol. Chem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg