The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genetic evidence for the nature, and excision repair, of DNA lesions resulting from incorporation of 5-bromouracil.

Escherichia coli mutants defective in DNA uracil N-glycosidase (ung-) or endonuclease VI active against apurinic/apyrimidinic sites in DNA (xthA-) exhibit enhanced sensitivity towards 5-bromodeoxyuridine relative to the wild type strain, pointing to involvement of these enzymes in repair of bromouracil-induced lesions in DNA. Mutants defective in DNA polymerase I, either in polymerizing activity (polAl-) or (5' leads to 3')-exonuclease activity (polA107-) exhibit unusually high sensitivity (including marked lethality) in the presence of 5-bromodeoxyuridine. The results indicate that DNA polymerase I, and its associated (5'--3')-exonuclease activity, are involved in repair of bromouracil-induced lesions and are not readily replaced, if at all, by DNA polymerases II and III. Thermosensitive mutant in DNA ligase gene ( lig ts7) shows high sensitivity towards 5-bromodeoxyuridine at 42 degrees C indicating the role of the enzyme in repair of bromouracil-induced lesions in DNA. Involvement of DNA uracil N-glycosidase, and endonuclease active against apurinic/apyrimidinic sites in recognition and repair of 5-bromouracil-induced damage permits of some inferences regarding the nature of this damage (lesions), in particular dehalogenation of incorporated bromouracil to uracil residues.[1]

References

  1. Genetic evidence for the nature, and excision repair, of DNA lesions resulting from incorporation of 5-bromouracil. Krych, M., Pietrzykowska, I., Szyszko, J., Shugar, D. Mol. Gen. Genet. (1979) [Pubmed]
 
WikiGenes - Universities