The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ligA  -  NAD-dependent DNA ligase LigA

Escherichia coli UTI89

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of lig

  • Restoration of ligase activity in E. coli K12 lig ts7 strain by bacteriophage Mu and cloning of a DNA fragment harbouring the Mu 'lig' gene [1].
  • The lig sequences are present in pathogenic but not saprophytic Leptospira species [2].
  • A partially sequenced gene upstream of the DNA ligase (lig) gene of the Zymomonas mobilis chromosome shows strong homology to the tgt gene of Escherichia coli (K.B. Shark and T. Conway, FEMS Microbiol. Lett. 96:19-26, 1992) [3].
  • The two B.subtilis ligase genes yerG and yoqV were also introduced in an Escherichia coli strain encoding a thermosensitive ligase (ligts), and whereas yoqV did not complement the ligts defects, yerG fully complemented the growth and UV sensitivity defects of the lig mutant [4].
  • A possible effect of heme on the fate of DNA ligase activity extracted from differentiating mouse erythroleukemia cells [5].
 

High impact information on lig

  • K. lactis DNA was partially digested with the restriction endonuclease Eco R1 and joined to Eco R1-digested pBR322 plasmid DNA using DNA ligase. ligase [6].
  • The latter activities apparently derive from reactivation of a cryptic DNA ligase active site [7].
  • DNA ligase is necessary and may be sufficient to repair EcoRI-mediated DNA breaks in the E. coli chromosome [8].
  • Strains defective in SOS induction (lexA3 mutant) or SOS induction and recombination (recA56 and recB21 mutants) are not more sensitive to this in vivo DNA scission, whereas strains deficient in DNA ligase (lig4 and lig ts7 mutants) are extremely sensitive [8].
  • Interaction occurs between the molecular events of mutagenesis induced by ultraviolet irradiation and those induced by DNA ligase deficiency [9].
 

Chemical compound and disease context of lig

 

Biological context of lig

  • This gene is located at 55 degree on the chromosome and belongs to a putative operon together with a ligase gene (lig) and two unknown genes named pcrB and yerH [14].
  • This new gene of Mu has been named 'lig'. A 5 kb fragment responsible for the reported effects and localized between genes gam and lys of Mu genome has been cloned in pBR322 [1].
  • Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified [2].
  • Nucleotide sequence analysis of the Z. mobilis lig region indicated that the gene is 2196 bp long, encoding a protein with a deduced molecular mass of 82,089 [15].
  • It increased the survival of strains defective in the endonucleolytic (uvr), repolymerizing (pol) and joining (lig) stages of the excision repair process [16].
 

Anatomical context of lig

 

Associations of lig with chemical compounds

  • Culturing the cells with dimethyl sulfoxide in the presence of imidazole resulted in a marked decrease in globin chain accumulation but did not reverse the dimethyl sulfoxide-related decrease in DNA ligase activity [5].
  • The BER complex contained both beta-pol and DNA ligase I. An antibody to beta-pol was able to shift the complex in sucrose gradients to a much larger molecular mass (>300 kDa) that again contained both beta-pol and DNA ligase I. Furthermore, DNA ligase I and beta-pol were co-immunoprecipitated from the testis nuclear extract with anti beta-pol IgG [17].
  • NaeI endonuclease contains a 10-amino acid region with sequence similarity to the active site KXDG motif of DNA ligase except for leucine (Leu-43) in NaeI ((43)LXDG(46)) [22].
  • A new method to detect DNA ligase activity in situ after NaDodSO4 polyacrylamide gel electrophoresis has been developed [23].
  • Duplex circular phiX174 DNA (RF I) containing some phosphoramidate links in the backbone chain of the (-) strand was synthesized by reaction of 5'-amino-5'-deoxythymidine 5'-triphosphate, dCTP, dGTP, and 3H-dATP with DNA polymerase I and DNA ligase (T4) on a (+) strand phiX174 amber 3 DNA template [24].
 

Other interactions of lig

 

Analytical, diagnostic and therapeutic context of lig

  • Southern blot analysis indicated the conservation of the lig genes among pathogenic leptospires [26].
  • In the presence of high concentrations of any of several types of macromolecules, DNA ligase preparations from rat liver nuclei or from Escherichia coli actively catalyze the blunt-end ligation of DNA [27].
  • In order to understand the structural basis underlying the reaction mechanism of Tth DNA ligase, we performed site-directed mutagenesis studies on nine selected amino acid residues that are highly conserved in bacterial DNA ligases [28].
  • Molecular cloning of the DNA ligase gene from bacteriophage T4. II. Amplification and preparation of the gene product [29].
  • Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus, and overproduction, purification and characterization of two thermophilic DNA ligases [30].

References

  1. Restoration of ligase activity in E. coli K12 lig ts7 strain by bacteriophage Mu and cloning of a DNA fragment harbouring the Mu 'lig' gene. Ghelardini, P., Paolozzi, L., Liebart, J.C. Nucleic Acids Res. (1980) [Pubmed]
  2. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily. Matsunaga, J., Barocchi, M.A., Croda, J., Young, T.A., Sanchez, Y., Siqueira, I., Bolin, C.A., Reis, M.G., Riley, L.W., Haake, D.A., Ko, A.I. Mol. Microbiol. (2003) [Pubmed]
  3. Sequence analysis and overexpression of the Zymomonas mobilis tgt gene encoding tRNA-guanine transglycosylase: purification and biochemical characterization of the enzyme. Reuter, K., Ficner, R. J. Bacteriol. (1995) [Pubmed]
  4. The NAD-dependent ligase encoded by yerG is an essential gene of Bacillus subtilis. Petit, M.A., Ehrlich, S.D. Nucleic Acids Res. (2000) [Pubmed]
  5. A possible effect of heme on the fate of DNA ligase activity extracted from differentiating mouse erythroleukemia cells. Scher, B.M., Scher, W., Waxman, S. Cancer Res. (1988) [Pubmed]
  6. Molecular cloning and expression in E. coli of a yeast gene coding for beta-galactosidase. Dickson, R.C., Markin, J.S. Cell (1978) [Pubmed]
  7. The domain organization of NaeI endonuclease: separation of binding and catalysis. Colandene, J.D., Topal, M.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Repair of the Escherichia coli chromosome after in vivo scission by the EcoRI endonuclease. Heitman, J., Zinder, N.D., Model, P. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  9. Induction of error-prone repair as a consequence of DNA ligase deficiency in Escherichia coli. Morse, L.S., Pauling, C. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  10. Stimulation of intermolecular ligation with E. coli DNA ligase by high concentrations of monovalent cations in polyethylene glycol solutions. Hayashi, K., Nakazawa, M., Ishizaki, Y., Hiraoka, N., Obayashi, A. Nucleic Acids Res. (1985) [Pubmed]
  11. Characterization of DNA metabolizing enzymes in situ following polyacrylamide gel electrophoresis. Longley, M.J., Mosbaugh, D.W. Biochemistry (1991) [Pubmed]
  12. Role of deoxyribonucleic acid polymerases and deoxyribonucleic acid ligase in x-ray-induced repair synthesis in toluene-treated Escherichia coli K-12. Billen, D., Hellermann, G.R. J. Bacteriol. (1976) [Pubmed]
  13. Control of tryptophan synthetase amplified by varying the numbers of composite plasmids in Escherichia coli cells. Nagahari, K., Tanaka, T., Hishinuma, F., Kuroda, M., Sakaguchi, K. Gene (1977) [Pubmed]
  14. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Petit, M.A., Dervyn, E., Rose, M., Entian, K.D., McGovern, S., Ehrlich, S.D., Bruand, C. Mol. Microbiol. (1998) [Pubmed]
  15. Cloning and molecular characterization of the DNA ligase gene (lig) from Zymomonas mobilis. Shark, K.B., Conway, T. FEMS Microbiol. Lett. (1992) [Pubmed]
  16. R factor-mediated resistance to ultraviolet light in strains of Escherichia coli deficient in known repair functions. Tweats, D.J., Thompson, M.J., Pinney, R.J., Smith, J.T. J. Gen. Microbiol. (1976) [Pubmed]
  17. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. Prasad, R., Singhal, R.K., Srivastava, D.K., Molina, J.T., Tomkinson, A.E., Wilson, S.H. J. Biol. Chem. (1996) [Pubmed]
  18. The cloning and characterization of a cDNA encoding Xenopus laevis DNA ligase I. Lepetit, D., Thiebaud, P., Aoufouchi, S., Prigent, C., Guesné, R., Thézé, N. Gene (1996) [Pubmed]
  19. Properties of a DNA-adenylate complex formed in the reaction between mammalian DNA ligase I and DNA containing single-strand breaks. Söderhäll, S. Eur. J. Biochem. (1975) [Pubmed]
  20. Recognition and processing of damaged DNA. Lindahl, T. J. Cell Sci. Suppl. (1995) [Pubmed]
  21. Mitochondrial DNA ligase function in Saccharomyces cerevisiae. Donahue, S.L., Corner, B.E., Bordone, L., Campbell, C. Nucleic Acids Res. (2001) [Pubmed]
  22. Amino acid substitutions at position 43 of NaeI endonuclease. Evidence for changes in NaeI structure. Carrick, K.L., Topal, M.D. J. Biol. Chem. (2003) [Pubmed]
  23. Heterogeneity of mammalian DNA ligase detected on activity and DNA sequencing gels. Mezzina, M., Sarasin, A., Politi, N., Bertazzoni, U. Nucleic Acids Res. (1984) [Pubmed]
  24. Enzymatic synthesis of duplex circular phiX174 DNA containing phosphoramidate bonds in the (-) strand. Letsinger, R.L., Hapke, B., Petersen, G.R., Dumas, L.B. Nucleic Acids Res. (1976) [Pubmed]
  25. Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene. Barany, F., Gelfand, D.H. Gene (1991) [Pubmed]
  26. Leptospiral immunoglobulin-like proteins elicit protective immunity. Koizumi, N., Watanabe, H. Vaccine (2004) [Pubmed]
  27. Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or Escherichia coli. Zimmerman, S.B., Pheiffer, B.H. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  28. Identification of essential residues in Thermus thermophilus DNA ligase. Luo, J., Barany, F. Nucleic Acids Res. (1996) [Pubmed]
  29. Molecular cloning of the DNA ligase gene from bacteriophage T4. II. Amplification and preparation of the gene product. Murray, N.E., Bruce, S.A., Murray, K. J. Mol. Biol. (1979) [Pubmed]
  30. Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus, and overproduction, purification and characterization of two thermophilic DNA ligases. Thorbjarnardóttir, S.H., Jónsson, Z.O., Andrésson, O.S., Kristjánsson, J.K., Eggertsson, G., Palsdottir, A. Gene (1995) [Pubmed]
 
WikiGenes - Universities