The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pantothenate-sodium cotransport in renal brush-border membranes.

The mechanism of pantothenate transport into rabbit renal brush-border membrane vesicles was studied. Under voltage-clamped conditions, an inward NaCl gradient induced the transient accumulation of pantothenate against its concentration gradient, indicating Na+/pantothenate cotransport. K+, Rb+, Li+, NH4+, and choline+ were ineffective in replacing Na+. Pantothenate analogs, D-glucose, and various carboxylic acids did not inhibit Na+-dependent pantothenate transport, suggesting that this system is specific for pantothenate. Kinetic analysis of the Na+-dependent pantothenate uptake revealed a single transport system which obeyed Michaelis-Menten kinetics (Km = 16 microM and Vmax = 6.7 pmol X mg-1 X 10 s-1). Imposition of an inside-negative membrane potential caused net uphill pantothenate accumulation in the presence of Na+ but absence of a Na+ gradient, indicating that Na+/pantothenate cotransport is electrogenic. The relationship between extravesicular Na+ concentration and pantothenate transport measured under voltage-clamped conditions was sigmoidal: a Hill coefficient (napp) of 2 and a [Na+]0.5 of 55 mM were calculated. It is suggested that an anionic pantothenate1- molecule is cotransported with two Na+ to give a net charge of +1. The coupling of pantothenate transport to the Na+ electrochemical gradient may provide an efficient mechanism for reabsorption of pantothenate in the kidney.[1]

References

  1. Pantothenate-sodium cotransport in renal brush-border membranes. Barbarat, B., Podevin, R.A. J. Biol. Chem. (1986) [Pubmed]
 
WikiGenes - Universities