The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The content of pentose-cycle intermediates in liver in starved, fed ad libitum and meal-fed rats.

Liver content of pentose-cycle intermediates and the activity of the three major cytoplasmic NADPH-producing enzymes and pentose-cycle enzymes were measured in three dietary states: 48 h-starved rats, rats fed on a standard diet ad libitum, and rats meal-fed with a low-fat high-carbohydrate diet. Measured tissue contents of pentose-cycle intermediates in starved liver were: 6-phosphogluconate, 4.7 +/- 0.5 nmol/g; ribulose 5-P, 3.7 +/- 0.5 nmol/g; xylulose 5-P, 4.3 +/- 0.4 nmol/g; sedoheptulose 7-P, 25.5 +/- 1.3 nmol/g; and combined sedoheptulose 7-P and ribose 5-P, 30.6 +/- 0.7 nmol/g. These values were in good agreement with values calculated from fructose 6-P and free glyceraldehyde 3-P, assuming the major transketolase, transaldolase, ribulose-5-P 3-epimerase and ribose-5-P isomerase reactions were all in near-equilibrium. Similar results were found in animals fed ad libitum. These relationships were not valid in animals fed on a low-fat high-carbohydrate diet, with tissue contents of metabolites in some cases being more than an order of magnitude higher than the calculated values. Measured tissue contents of pentose-cycle intermediates in these animals were: 6-phosphogluconate, 124.2 +/- 13.9 nmol/g; ribulose 5-P, 44.8 +/- 7.1 nmol/g; xylulose 5-P, 77.2 +/- 9.4 nmol/g; sedoheptulose 7-P, 129.9 +/- 10.1 nmol/g; and combined sedoheptulose 7-P and ribose 5-P, 157.0 +/- 11.3 nmol/g. In all animals, regardless of dietary state, tissue content of erythrose 4-P was less than 2 nmol/ml. Liver activities of glucose-6-P dehydrogenase and 6-phosphogluconate dehydrogenase were increased from 3.5 +/- 0.9 mumol/g and 7.3 +/- 0.5 mumol/min per g in starved animals to 13.2 +/- 1.1 and 10.5 +/- 0.7 mumol/min per g in low-fat high-carbohydrate-fed animals. Despite these changes, the activities of transaldolase (3.4 +/- 0.3 mumol/min per g), transketolase (7.8 +/- 0.2 mumol/min per g) and ribulose-5-P 3-epimerase (7.5 +/- 0.4 mumol/min per g) were not increased in meal-fed animals above those observed in starved animals (3.4 +/- 0.2, 7.1 +/- 0.3 and 8.6 +/- 0.4 mumol/min per g respectively). The increase in the activity of oxidative pentose-cycle enzymes in the absence of any change in the non-oxidative pentose cycle appeared to contribute to the observed disequilibrium in the pentose cycle in animals meal fed on a low-fat high-carbohydrate diet.[1]

References

 
WikiGenes - Universities